_HSCSOSDUA11:CGOLDEN.BELLENOT.CU?E.OSJ]AAREADME.UPDATE}2

JET PROPULSION LABORATORY INTEROFFICE MEMORANDUA
SF3:3463-25-002

Update notes for the dining philcsonhers
12-aug-36
steve bellenot

the philoscphers are pretty much in the state they were last summer
with exception of many ccmpile time switches. (henc2 the numoer of different
¢ filas.)

the one error noticed is that each philosopher has one more thought
than MAX_NUM_THOUGHTS (perhaps it is a metathought). one should be careful
to note this #def constant. some phil's have this set to 1, others 5 and
a third has it at 99. (those with 99 thoughts are in Ltphil.c and sltphil.c)

another swWwitch in the glutton #d2f, if on (as is currently true)
the philosophers spend of their time hungry and hence waiting for forks.
if glutton isn't #def they spend most of their time thinking and the forks
are mostly free.

a query suitch is available as well. 2 gphil.c will query one of
the forks beforz and after it recuests that fork.

forks and phils _pprintf every time there event section is run.
the sforks and sltphils ar2 silent versions of the same objects.

an interesting .cf file is on2 with ons object of type phil
with name FOO and initial message AFOOFOONO will haopily run by itself.
using gphil or Ltphil etc in place of phil will also work. .

the new object added this summer is the timekeeper object and its
many variants. the timekeeper is a "prime mover" object which also
“"almost”™ times the simulation. its design as a timekeepar is wrong but
jt will give a rough idss of the simulation time. The prime mover part
was required for timing with 2113, and may not be needed with versions
2214 and above.

in any case timebi.c is a timekeeper which starts 4 phils named
philO, phills, phil2, and phil3 2ach of which is told to delay TA'Y amount
Cwhich is zero). on the ih this file is time4A.img since a delay of 'a’
Caround 30) is also possible. how these delays work is in my inter
office memo 3%3:35:002 the dining philosopher benchmark. (from last
summer)

JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB:363-86-003

TO: Time Warp List 15 September 1986
FROM: Steve Bellenot
SUBJECT: Timing Philosophers on Hypercubes

This memo contains the "best" hypercube timing measurements on
the dining philosopher benchmark that | obtained this last summer. These
results are preliminary. The reader is warned to read all the cautions.
Some supporting VAX timing is also included.

These measurements seem to indicate that efficiencies near 90%
and speedups of around 3.6 were obtained by comparing the 4-node to
16-node runs (runs C to B or D to E, see [9] below). There is a timing which
indicates the cost of communicating over many hops (compare run F to B,
see [11]). And finally, a couple of timings that imply that a goodly percent
of the time was spend in operating system overhead (compare run E to B or
run D to C and the VAX timings below [12]). However there are many
cautions on why and how these timings are limited (i.e. why comparing run
A 10 B gives an efficiency of over 100% [10)).

A 41 min 1894.95 1901.71 11 Aug 86 tnice2.16 O
B 10 min 466.37 478.60 11 Aug 86 tnhice4.16 0O
C 9min 411.20 425.25 12 Aug 86 toth24 0O
D 9min 43502 448.63 12 Aug 86 toth24 8
E 10 min 503.07 508.07 12 Aug 86 tniced4.16 8
F 13 min 5353.40 569.36 13 Aug 86 tfar4.16 O

TABLE 2: The VAX Timing Results

DELAY #*THOUGHTS ISEB60>* ISE780%* ISE752%
0 5 0.802 2.767 4951

8 5 1.575 5.829 9.525

0 10 1.017 3713 6.797

8 10 2.420 9.333 15.106

XTime in seconds

EXPLANATIONS, ASSUMPTIONS, CONCLUSIONS AND ITEMS FOR YOUR
CONSIDERATION:

1. The slow clock in Table 1 was assumed to be uniformly slow. Both the
timekeeper and gvttime are based on this slow clock. The timekeeper's
time is the time from before he sends all the initial messages to each of
the philosophers to the time after he receives the last message from each
philosopher. (Actually the timekeeper's time may not be the total time of
the simulation. If some philosopher “sends” his final message twice, Time
warp wouldn't send the second message.) Timekeeper's time is a lower
bound on the total simulation time. Gvttime is the time between the
gvtinit message and the time when gvt first becomes positive infinity.
Gvttime is an upper bound on the total simulation time. The time between
gvt calculations is on the order of ten seconds. Thus even though the slow
clock is "accurate to 100 microseconds” these times in Table 1 are
perhaps accurate to only a couple of significant figures.

2. The clock time in Table 1 was measured by an old digitial wristwatch.
This watch didn't have a stopwatch feature, and so times are rounded of f
to the nearest minute. This clock was attempting to measure the same
time interval as the timekeeper object. These two measurements imply
that the internal Time Warp clock was warped when these runs were made.
However all these runs were made after Mike and | found the big bug with
the timers and the timer code didn't change over these runs.

3. The times in Table 2 were obtained by averaging the times of ten runs
on each of the three VAX's ise860, ise780 and ise752. The runs were all
within 6.5% of the given averages. The initial measurements were said to
be accurate to 10 milliseconds. These timings of the dining philosopher's
benchmark indicate that a delay of 8 roughly doubles the total time of
running the simulation on the Time Warp Simulator. All these VAX timings
were run at night.

4. The dates are given in Table 1 partly because the Time Warp code was
changing over this time period. Indeed the run F was attempted on 11
August but it wouldn't complete. The "fix" in forwarding messages wasn't
in the code until the 13th. However, runs A-E don't really use the message
forwarding code since their communication is between nearest neighbors
only. We assume these code improvements did not significantly change the
total simulation time,

5. These timings in Table 1 are not averages. Each timing was made only
once. (On a time available basis between time spent debugging the code.)
However, earlier experience with multiple timings of small simulations
using Time Warp on the hypercube had shown no significant variation on
total simulation time,

6 We assume the changes in the parameters given here do not effect our
relative timing conclusions. Maximum_num_thoughts was 100 for each of
the hypercube runs and this parameter is given by #thoughts in Table 2.
This #defined constant is one more than the number times the philosopher
loops throught the think-eat cycle. Also there were only five philosophers
and five forks in the VAX runs but either four philosophers and four forks
or sixteen philosophers and sixteen forks on the hypercube runs. We state
these differences in case anyone is tempted to compare VAX times with
hypercube times on an absolute basis.

7. The configuration files names are given in Table 1 were on the IH nncpl
when i left this summer (in /usr/steve/mon_dine). Let me summarize
their contents. First each filename ends with two numbers x.y, where X is
the dimension of the hypercube and y is the number of philosopher objects
andy is also the number of fork objects. Each philosopher communicates to
only two forks, which we will call his left and right forks.

tniced. 16; One philosopher per node, his left fork is on the same node and
his right fork is one hop away on a nearest neighbor node. Sixteen
philosophers, sixteen forks and sixteen nodes.

tnice2.16: Four philosophers per node, each philosopher has his left fork on
the same node and his right fork is one hop away on a nearest neighbor
node. Sixteen philosophers, sixteen forks and four nodes.

toth2.4: One philosopher per node, his left fork is on the same node and his
right fork is one hop away on a nearest neighbor node. Four philosophers,
four forks and four nodes.

tfar4.16: One philosopher per node (also one fork per node), his left fork is
as far away as possible, four hops away, and his right fork is three hops
away. (Thus communication is as bad as possible for the dining
philosophers.) Sixteen philosophers, sixteen forks and sixteen nodes.

8. We assume the simulation took Tong enough (or the time measurements
are coarse enough) that the initialization (and finalization) "objects”
(timekeeper and stdout) are not important factors in these timings. (Each
configuration file included these two objects as well.)

9. We assume that a reasonable speedup time is obtained by taking the
total time to run toth2.4 dividing by the total time to run tniced.16 and
multipling the result by four. (Somehow it seems reasonable to say there
is "exactly” four times as much work in tnice4.16 as there is in toth2.4.)
Note that there are reasons why one could think otherwise. For example,
the world map is four times larger with four times the objects. Seaching
time for world map records is roughly the same, but more memory is being
used to store them.

10. We believe the reason why the speedup time obtained by dividing run
A's time by run B seems larger than possible is due to memory exhaustion.
Inrun A, with four times as many objects on each node, each processor
spend a larger percentage of its time between gvt calculations out of
memory, than did each processor inrun B. (Objects always tried to save
their state after each event and the states were much bigger than
messages in these versions of the code.) Also changing the time interval
between gvt calculations might have improved things, however that was
not attempted.

I 1. Note that the one-third increase in total time between runs B and F
could be entirely due to increased communication time, or due to an
increased number of rolibacks because of increasing asynchronous delays.
A bit of statistics would likely determine the combination of effects that
were timed, In any case we have at least an example of where incorrect
placement of objects results in a 30% increased in execution time, even
when both configurations are load balanced.

12. Perhaps the most depressing timings are Cvs D and B vs E. The VAX
timings would say we have doubled the amount of the time needed to
complete the simulation, yet the increased time is less than 10%. Does
this imply that 90% of the time inruns B and C is overhead needed to go
from the sequential simulator to the parallel Time Warp operating
system? Of course, it is way to early to be depressed by such results since
the main attempt at optimalization is (was?) yet to be done when these
timings were obtained.

