JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SB:3630-85-002

19 August 1985

102 Time Warp Distribution
FROM: S. Bellenot @

SUBJECT: Dining Philosophers

Here is the documentation for the Dining Philosophers Benchmark Simulation.

SB:gl

THE DINING PHILOSOPHERS BENCHMARK

The "dining philosophers problem" is a well known example from the
theory of concurrency. As a simulation to be run using Time Warp, the
dining philosophers can be used as a benchmark to obtain estimates on the
communication costs in several ways. Brian Beckman (JPL |IOM 335.1-285,
13 Feb 1985) suggested that the dining philosophers would be a good
candidate for Time Warp. However, our objects are somewhat different
from those he suggested.

The dining philosophers simulation has a "natural mode" which is
perfectly load balanced (at least at first glance). That is, any two objects
of the same object type, either fork type or philosopher type, have uniform
CPU time requirements. Thus perfect load balance is obtained by giving
each node the same number of instances of both fork and philosopher
objects. Hence simulation costs that are caused by an imbalanced load are
theoretically missing in the "natural mode".

BENCHMARK TESTS:

1. Varying the communications / computation ratio: The philosopher
objects have a delay parameter (which is passed with the initialization
message in the cfg file) which determines the amount of real time needed
to complete a cycle. Since "doing nothing" is very concurrent, if these
delays are large, then we should see linear speed-up. On the other hand, if
the delays are near zero, then essentially the costs are all in
communications and speed-up should not be anywhere as good. Perhaps an
overload threshold of communication / computation can be found, where
simulations whose ratio is greater than this threshold will have poor
speed-ups.

2. Varying message length: The messages used by the simulation are
in the separate file "dinphmsg.h". As long as the first letter is the same as
given, the message length can be arbitrary increased (all messages must
be the same length). Both of the objects' code must be recompiled to effect
such changes. Thus a measure of the effect of message size on the

simulation run time can be made. :

, 3. Varying the internode distance that messages travel within the
hypercube: The program configme.c will interactively construct a cfg file
where objects that communicate are, on the average, a given number of
hypercube jumps apart. This will estimate the importance of putting two
objects which talk to each other near to each other in the hypercube. (The
program configme.c isn't written yet but its construction is outlined
below.)

4. Unnatural mode costs: Although we haven't automated it, one can
obtain some estimates on the costs of unbalanced loads with the dining
philosophers as well. Making philosophers on one half of the table run
twice as fast as the other philosophers should increase the amount of
rollbacks and might run a good deal slower than if all the philosphers were
running in the slower mode.

Statement of the dining philosophers problem:

| There are several (say five) philosophers sitting around a table.
Philosophers alternate between eating and thinking. To eat, a philosopher

must get two forks, one on each side of him. Since there is only one fork

between neighboring philosophers, when philosopher A is eating, neither of

his neighbors can eat. See the diagram below. (In some statements of the

problem, the forks are replaced with chopsticks.) A solution to this

problem must be deadlock-free (i.e. all the philosophers can't have one fork

while waiting for the other) and treat each fork as a critical region (i.e. if

two philosophers reach for the same fork at the same time, then one and

only one philosopher gets the fork).

\%049—

O O
/O\

THE PHILOSCPHER OB L CT:

The philoanher ubject has six "states™ as shown in the diagram
below. Except for the initial message which is received in the UNINIT
state, the philosopher never reads his messages. The philosopher goes into
the DEAD state after MAX_NUM_OF _THOUGHTS cycles through the loop:
THINK, HUNO (hungry with zero forks), HUN1 (hungry with one fork), EAT.

. UNINIT: Reads the initial message to find the object names of his
two forks and the delay factor, then changes to THINK state.

THINK: (Assumes the event message is a MSG_WAKE._UP.) He
increments num_of _thoughts, requests the fork on one side and changes to
HUNO state. _

HUNO: (Assumes the event message is a MSG_GRANTED from the
fork.) The object requests the other fork and changes to HUNT1.

HUN1: (Assumes the event message is a MSG_GRANTED from the
second fork.) The object has both forks and changes to EAT, but first sends
a MSG_WAKE_UP to himself so he will know when to siop eating.

EAT: (Assumes the event message is a MSG_WAKE_UP.) The object
releases both forks, changes to DEAD if num_of_thoughts >=
MAX_NUM_OF THOUGHTS, else changes to THINK and sends a MSG_WAKE_UP
to himself so he will know when to stop thinking.

DEAD: Do nothing. (The object gets no rmessages in this state.)

Some predefined constants:

10 /* Reach Time */

THINK_TIME

EAT LENGTH

START_TIME
BUSY
HOLD

BUSY
NOHOLD / -

Finite state diagram for
the philosophers

Finite state diagram
for the forks |

THE FORKOBJECT:

The fork object acts like a binary semaphore. However its wait
queue only has room for one philosopher. (All that is needed for this
problem.) The finite state diagram for the fork is given above. The fork
starts out in the FREE state. Note that the fork can receive two event
messages at the same time and they both could be requests (MSG_WAIT).
Care has been taken so that the same philosopher will win this race no
matter which order Time Warp uses for these messages.

FREE: Fork currently idle.

BUSY_NO_HOLD: Fork is in use by one philosopher, but the other
philosopher hasn't requested the fork.

BUSY_HOLD: Fork is in use and there is a philosopher waiting for it
too.

Some predefined constants:
1 /* Time it takes for a fork to reply */

FORM OF THE INITIALMESSAGES:

The Fork needs no initial message (in fact such a message could
introduce a fatal error). On the otherhand, the Philosopher's initial
message is critical. The Philosopher's initial message basically tells him
the name of his two forks and optionally, how much to delay while
thinking. It is assumed that the name of all Forks start with 'F' and the
initial message ends with a \Q'. The general form is either:

"FxxxxxFyyyy" or "dFxxxxxxxFyyy"

where 'd' is the delay factor (given by (int)('d' - 'A") or zero if d is
missing), Fxx is the name of fork0 and Fyyyyy is the name of fork1. (Note
that a delay of 'F' - 'A' is not possible.)

DEADLOCK PREVENTION:

The order in which the Forks are given in the initial message must
take deadlock into account. Since the Philosopher always asks first for
fork0 and holds it until he gets fork1, deadlock is a real possibility. A
suggested format is that forkO should always be "even" and fork1 "odd",
not only will this prevent deadlock, but it will also smooth the initial
behavior of the simulation.

CONFIGME ALGORITHM:

In general, we want to put p Philosophers per node onad
dimensional hypercube with the "average" message travel of j hops (the
number of node to node communications between the source and
destination of the message). Here there are n = p * 2**d Philosophers and
Forks both numbered 0 through n - 1.

Philosophers i*n through (i+ 1) * n - 1 go onto node k = gray (i).
The function gray can be defined as:

gray(i) inti; {intis;is =i>> 1;returni®is; }.

Forks i*n through (i + 1)*n - 1 go onto node k » (2**j - 1).

MEMORY COSTS:

The memory costs of different sized messages has been designed so
this cost is just the amount of memory needed to store the message. That
is there is only one place in the code for each of the five messages.
However, a long message will make the code section longer and thus
decrease the memory for messages and states. Perhaps keeping the
messages long and just varying the #defined variable MSG_LEN will give a
better measure of the cost of long messages on simulation speed.

AN EXAMPLE:

The figure on the next page shows two ways of assigning objects to
nodes for a Dining Philosophers simulation. The bottom one is obviously
the best possible. The top one has the interesting property that
interchanging any two objects of the same type will increase the
commucation costs. That is, the top assignment is in some sense a local
best assignment which isn't the global best assignment.

SOURCEFILES:

The .c and .h files for the Dining Philosopher simulation are in the
GaSSVax::mda2:[bellenot.twsim] directory.

Msg Path
-~ Node Conn

) Six Links
0 |
_,./

\

Fk_3

Ph_3

Four Links

