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ABSTRACT

Optimistic methods of synchronizing parallel discrete event
simulations have a state saving overhead that neither sequential, nor
conservative methods require. In an optimistic method, a simulation object
can rollback to an earlier simulation time and hence copies of the state
variables at earlier simulation times are needed. However, the state
variables need not be saved after every event, since missing copies of
these states can be recomputed. State skipping is the number of states
which you don't save between states that are saved.

Performance results for a number of benchmarks suggest that there
are increases in speed of execution with state skipping when running on a
small number of processors, but these benefits decrease or can become
liabilities as the number of processors increase. These results are roughly
in agreement with the theoretical predictions of Lin and Lazowska.
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Introduction

The Time Warp Operating System (TWOS) is the Jet Propulsion
Laboratory's (JPL's) operating system implementation of Time Warp
[J et. al.]. Time Warp is a method of optimistically synchronizing
parallel discrete event simulations [J]. For TWOS, a simulation is
divided into "objects." Objects have a "state" which contains all of its
state variables. Optimistic synchronization requires the archiving of
old copies of this state. This allows objects to “rollback" to earlier
simulation times and resume execution. Thus if a straggler event
(message) arrives, then the object, which is (perhaps incorrectly)
executing in the future, will be "rollback" to execute the straggler.

It is not necessary to save a copy of an objects state after every
event. Missing states can be reconstructed as long as there is a state
with an earlier simulation time and copies of all events (messages)
between the two states. By not copying a state after an event, one
can save the storage and the execution time needed to allocate the
storage and to do the actually copying. On the other hand, by not



copying a state, one risks losing execution time by having to
reconstruct the state after a rollback.

State skipping is the number of states which you don't save
between states that are saved. Current versions of TWOS have a state
skipping number of zero. They always save a copy of the state of an
object after every event. (But see the historical note below.) We
modified version 2.4.1 of TWOS to test the effects of varying the
state skipping number on the run time of four benchmarks. A term
related to the state skipping number is the checkpoint interval. The
checkpoint interval is the number of events between save states.
Thus the checkpoint interval is always one more then the state
skipping number.

The motivation for this work was to resolve an apparent
contradiction. Old studys on TWOS showed that saving a copy of the
state after every event produced the fastest speedups. While Preiss,
MaclIntyre and Loucks [PML] have shown that state skipping of one
or more can significantly improve the execution time of a simulation.
The number of processors seems to be the key to this mystery. As
one increases the number of processors used to run a particular
simulation, the value of state skipping decreases.

Copying Overhead in Optimistic Simulation Synchronizations

The overhead associated with state copying in Time Warp has
been mentioned several times in the literature. State copying (and
also the message copying) are (both space and time) overheads to
optimistic methods but are totally unneeded in either sequential
methods or conservative methods. Both software and hardware
solutions to minimizing this overhead have been offered. For
software, Lin and Lazowska [LL] have, under simplifying
assumptions, theoretical results on how often to save a state. (Their
results are outlined below.) Preiss, MacIntyre and Loucks [PML]
have empirical results which show that this software solution can
save both space and time. For hardware, Fujimoto, Tsai and
Gopalakrishnan [FTG] have designed the "Rollback Chip" which would
off load all the state saving into hardware. Integrated Parallel
Technology is currently in the process of producing rollback chips
[BRF]. Felderman and Kleinrock [FK] have theoretical results on state
saving in the two node case. Even the original design of TWOS
worried about state saving overheads (see historial note below).

Extreme Case 1: Time Warp on One Node.




When running Time Warp on one node (processor) several
optimizations are possible. Since there are no rollbacks in a one node
Time Warp (see below), the is no need to archive any state copies.
Thus all of the state copying overall could be removed by making the
state skipping number infinity. (Lin and Lazowska also predict
infinity for the one node case.) By analogy, one would not be too
surprized that if a simulation run on a few nodes had few rollbacks,
then relatively high state skipping numbers would produce the
fastest run times.

In practice there are two problems with infinite state skipping.
The first is that one runs out of memory because old fossil messages
are never garbage collected. Indeed, all the messages since the last
saved state are needed to recreate the missing states. If the state
skipping number is too high, one can run out of memory storing all of
these messages. (The bank benchmark below shows that this can
happen in practice.) The second problem is that rollback can occur on
one node, if the simulation has events for "now."

Extreme Case 2: Time Warp with Idle Time.

It is possible to spread the objects of a simulation over enough
nodes that there isn't enough useful work to keep all of the nodes
busy. Since this idle time is free, it would cost nothing to use this
time saving states. (Well it does cost storage.) That is some of the
state saving overhead is using CPU time that would be otherwise
unused. Thus as one increases the number of nodes, one would
expect the idle time to increase and the value of state skipping to
decrease.

The amount of idle time is related to the message density.
Message density can be measured on a per node or per object basis.
The object message density is the number of active messages divided
by the number of objects. The node message density is measured on
a pure node basis. If there is no idle time, then the node message
density must be large enough to keep all the nodes busy.

Of course bottleneck and runaway objects won't have idle time.
One hopes that a well designed decomposition of the simulation into
objects would not produce bottlenecks. Runaway objects, objects
which will are always ready to execute, often incorrectly, often way
in the future of the rest of the simulation, will use any otherwise idle
time to do what is likely wrong computation. Again using the time to
save a state benefits the simulation as a whole as it slows the
runaway object. (Runaway objects are often self-propelled by always
scheduling a future event for itself.)




We will see below (Figure 1) that the JPL standard benchmarks
all have idle time on large number of nodes. On the other hand, the
benchmarks of Preiss, Maclntyre and Loucks [PML] all have a per
processor message density of at least 32 with one exception which
had a density of 8 messages per processor. Assuming random
placement of 64 messages over their 8 processors (message density
8), the probability there is a processor with no message is less than
0.0016, and with 256 messages (message density 32) the probability
decreases by a factor of a trillion.

Increasing the number of nodes increases the chances for
idleness in two ways. Even if the message density per node remains
constant as the number of nodes increase there is a better chance for
some node being idle as Table 1 shows. More often, the number of
messages remain constant as the number of nodes increase and
idleness increases even faster (see Table 2). A graph of node zero
idleness versus number of nodes for a fixed number of messages
grows exponentially. Since the curves in Figure 1 are roughly linear
these combinatorics do not explain all that is happening.

Message Density per Node 8 nodes 64 nodes

1 0.9976 0.99999998
4 0.11 0.70
8 0.0016 0.0200
Table 1: Probability of Some node being idle.
Total Messages 8 nodes 64 nodes
8 0.34 0.88
32 0.014 0.60
64 0.0002 0.36
256 1.4E-15 0.018

Table 2: Probability of Node Zero being Idle

The Middle Ground:

There are two modes of Time Warp behavior which have been
called saturated and unsaturated. A saturated simulation always
(mostly) has good simulation work to do, where as an unsaturated
simulation can (often) run out of correct work. Perhaps what we are
witnessing is a transition from one behavior to the other as we
change the number of nodes.

The Lin and Lazowska Estimates
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For full details see [LL], we start with four measured variables
for a simulation:

G The granularity, the average real time it takes an object to
execute one event.

C The average real time it takes to save an object's state.

E The number of events executed in the simulation when states
are saved after every event.

R The number of rollbacks in the simulation when states are
saved after every event.

From the above variables we derive two ratios. The "space/time"
ratio of an object, T = C/G. Note that T is independent of the number
of nodes which the simulation is executed on. The second ratio is the
expected number of events between rollbacks, N = E/R. In general, N
varies as the simulation is executed on different number of nodes.
(In particular, N is infinity when the number of nodes is one.) Define
U = (2N+1)T and L = (N-1)T, then the estimated optimal state
skipping number SS satisfies

squareroot(L) - 1 <= SS < squareroot(U).

Note that the results of [LL] are stated in terms of a checkpoint
interval, which is one more than than the state skipping number. (lL.e.
a checkpoint interval of one -- saving state after every event--is the
same as zero state skipping--skip saving zero states between two
saved states).

Measuring R and E:

Events are not atomic in TWOS. An object can rollback while in
the middle of an event. TWOS does not count the number of
rollbacks. Thus we are stuck estimating both R and E. For E we used
the number of events completed. For R we used the number of
events rollback over which is events completed minus committed
events. So N is (Committed Events + R)/R. The use of events rollback
over for R assumes that the average rollback rolls over one
completed event. :

TWOS also counts the number of events started which is the
number of times the function objhead is called. This function is called




before any event is started, but the object can rollback before any
object code is actually executed. There are more events started than
events completed. So the average of one completed event per
rollback has a chance of not being totally arbitrary.

However, TWOS does use rollback for things other than
synchronization. In particular, memory allocation failures can cause
both a rollback and a reverse message which will cause a rollback on
the message's sending node. Perhaps this is why TWOS does not
count rollbacks. In any case, our N is only a rough estimate which we
hope at least has the correct per node behavior.

The Benchmarks

We used four benchmarks. Three were standard benchmarks
from the JPL TWOS benchmark suite [R2]. Pucks [H et. al.] is a
colliding pool balls simulation. STB88 [W et. al.] is a theater level
combat simulation. Warpnet [P et. al.] is a computer network
simulation. The fourth, “bank”, is an artificial simulation designed to
gauge the cost of state saving for the upcoming rollback chip. Both
the size of a bank’s state and the message density per object are
easily varied with bank.

All executions were made on JPL's BBN butterfly, a GP-1000
with over 80 nodes. The execution times used TWOS 2.4.1 modified
to support state skipping. The idle time measurements used TWOS
2.4.2 modified to estimate idle time. Our estimates of the Lin
Lazowska estimates used data from the TWOS 2.5 benchmark run
[R2] (without dynamic load management) and [R1] for state saving
costs. For comparison with [PML], TWOS was run with lazy
cancellation and what they call MVT scheduling. (In MVT scheduling
a object which is recreating a state at time A to execute an event at
time B is scheduled with respect to A and not B.)

Figure 1 shows idle time as a function of node for the three
standard benchmarks. This is a conservative estimate of idle time.
While idle in the sense of Figure 1, a node has nothing to do. The
non-zero idle time for STB88 and Pucks at 4 nodes is due to memory
problems. TWOS can stop executing objects when it runs out of
memory, it will attempt to run again when a message arrives.

Figures 2 and 3 show our estimate of N and the estimates of
Lin and Lazowska for Pucks, Stb88 and Warpnet. These are all driven
by the number of events rollback over. For these three benchmarks,
events rollback over is, at least to a first approximation, linear in the
number of nodes. We define the "rollback factor" to be the slope of
this line divided by the number of committed events.
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Pucks:

Pucks has 304 objects, 362824 committed events, 405802
committed event messages and has a speedup near 14. Of the three
JPL benchmarks, Pucks has the smallest granularity with a G = 2.7
milliseconds. The size of an objects state ranges from over 4K to
under 8K, making C between 1.3 and 2.0 milliseconds. For Figures 2
and 3 we used a middle value so that T is about 5/8, by far the
largest of the three standard benchmarks. Also Pucks rollback factor
was the largest, roughly 1.8% or each node added roughly an
additional .018 * 362824 events rolled over.

Figure 4 shows the results for Pucks. Figure 4a shows the run
times for state skipping of zero, one, two and three for 16 and more
nodes and Figure 4b shows the same data in percent change from the
zero state skipping case. Of the three JPL benchmarks, Pucks is the
only one which state skipping speeds up the fastest case. Even here
the improvement is less than one percent.

Not shown is the improvement on 12 or fewer nodes. On 12
nodes, state skipping of one wins with a 4.8% increase over the zero
state skipping case. For 6 and 8 nodes the state skipping of two wins
with 8.0% and 6.8% increases over the zero state skipping case. On 4
nodes state skipping of three is 121% faster than the zero state
skipping case.

For Pucks state skipping is a win. A big win a small number of
nodes and a modest winner at the high number of nodes. All of the
best state skipping numbers are within the ranges given by Figure 3.

STB8S:

STB88 has 380 objects, 389382 committed events, 603472
committed event messages and has a speedup above 26. The
granularity of STB88 is in the middle with a G = 8.1 milliseconds.
The size of an objects state has a wilder range than Pucks, making C
between 0.9 and 2.5 milliseconds. For Figures 2 and 3 we used a
middle value so that T is about 1/5, the middle of the three standard
benchmarks. However STBS88's rollback factor was in the smallest,
roughly 0.8% or each node added roughly an additional .008 *
389382 events rolled over. Figure 5 shows a "best linear fit" of
STB88's events rollback over versus number of nodes.

Figure 6 shows the results for STB88. Figure 6a shows the run
time data while Figure 6b shows the same data in percent change
from the zero state skipping case. For STB88 the zero state skipping
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case is the speed winner. Only at 8 nodes does state skipping of one
beat zero state skipping by more than one percent. Again all of the
best state skipping numbers are within the ranges given by Figure 3.

Warpnet:

Warpnet has 169 objects, 35027 committed events and 45319
committed event messages and has a speedup of almost 30. The
granularity of Warpnet is the biggest with, G = 51.5 milliseconds.
Except for some initialization objects all Warpnet objects have the
same state size with C = 1.5 milliseconds. This makes Warpnet's T
about 0.03, by far the smallest of the three standard benchmarks.
Warpnet's rollback factor was roughly 1% which puts it in the
middle.

Figure 7 shows the results for Warpnet. Figure 7a shows the
run time data while Figure 7b shows the same data in percent
change from the zero state skipping case. From 12 nodes out, the zero
state skipping case is the fastest. At 6 and 8 nodes state skipping of
one is fastest but by less than one percent. At four nodes the state
skipping of two is the fastest, but only by slightly more than one
percent. All of the best state skipping numbers are within the ranges
given by Figure 3 with the exception of the 4, 6 and 8 node cases.
Each of these has the optimal state skipping number one higher than
the upper estimate.

Bank:

Each of the 64 bank object reacts to a message by generating a
message with a random receiver and random exponential arrival
time. Thus bank is much like a fully connected server network with
zero service time. The execution time of each event is very small. (In
TWOS, an object sending a message has at least four context switches
included in its timing.) The granularity of bank is G = 0.8
milliseconds. The size of the state is varied by including a large
integer array whose length is a compile time constant. We ran
experiments with a state size of roughly 1 KB (C = 0.5 milliseconds,
which yields a T = 5/8, the same as Pucks) and with roughly 12 KB (C
= 3.3 milliseconds, which yields a much larger T of about 4). The (per
object) message density was 5 for both state sizes. There were 31747
committed events and 31987 committed messages for the message
density 5 simulations. Latter we run with a (per object) message
density of 50 in the 12 KB case (317954 committed events and
320354 committed messages).
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Figure 8a shows the plot of N for the 1K, 5 message density
bank and Figure 8b shows our estimates of the Lin and Lazowska
estimates. Figure 9a, 9b and 9c show the results for bank in terms of
percent increase in speed up. Runs with state skipping of zero, one,
two, four, eight and sixteen are show. Both runs with the 12K state
had memory problems in the zero state skipping case. Thus the
curves for N in the 12K cases measure something different than what
Lin and Lazowska had in mind. (As a first approximation, one could
use Figure 8a for the 12K, 5 message density case and multiply the
estimates in Figure 8b by about 2.5.)

Figures 9a shows that on one node, higher state skipping isn't
always faster (see above). Figure 9c shows a similar behavior at
small number of nodes. Here state skipping of 16 is fastest at 6
nodes, but on 4 nodes state skipping of 16 runs out of memory. The
state skipping of eight show a similar reversal. The 12K, 50 message
density case was run at 64 nodes, the message density was high
enough so that the state skipping of four was 19% faster than the
zero state skipping case.

At least in the 1K state size, 5 message density case the Figure
8b estimates are slightly lower than best state skipping numbers
observed in Figure 9a.

Conclusions:

State skipping can be an effective method of reducing the
overhead due to state saving. Our experiments show that the effect
of state saving generally decreases as the number of processors
increase. It is shown that the effects of state skipping can range from
a big win in the saturated case to a lost in the unsaturated case. Our
estimates of the Lin and Lazowska estimates on the optimal state
skipping number are reasonable fits to the experimental data.

Historical Note

The original design of TWOS [J et. al.] called for periodic state
saving. Like state skipping, periodic state saving does not always
save a copy of an object’s state after every event. Periodic state
saving's decision to save a state was based on real CPU execution
time. A copy of the state was saved if at least "save period" amount
of CPU time was used by the object since the last time the object
saved a copy of its state.
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Periodic state saving was implemented in the first TWOS. Early
tests indicated that always saving state (i. e. using a save period of
zero) was much faster. The rational for including periodic state
saving was more for decreasing memory usage than for increasing
speed. The original target machine, the JPL mark II hypercube, had
only 256 KB of memory per processor.

Eventually periodic state saving was removed from TWOS. No
value of save period was found which would improve a maximum
speed up. It any case there was enough idle time on 32 processor
Mark III hypercube runs that briefly TWOS did garbage collection of
fossils only during idle periods. Although this speeded up 32
processor run times, it was deleted because there was not enough
idle time for the 8 processor runs.
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