Tools for Measuring the Performance
and Diagnosing the Behavior of
Distributive Simulations using Time

Warp
Steven Bellenot Michael Diloreto
Departments of Mathematics Jet Propulsion Laboratory,
and Computer Science, California Institute of Technology,
The Florida State University, 4800 Oak Grove Drive,
Tallahassee, FL 32306 Pasadena, CA 91109

Abstract

Like any new design, Time Warp (a distributive simulation
operating system) needs tuning in order to obtain maximum
performance. While we do not claim to have tuned Time Warp to this
peak, but we offer a collection of tools and observations we have
found useful in improving Time Warp's performance. We caution the
reader that we do not claim to present the lastest in graphics nor
the last word in performance measuring tools. We modestly are
documenting our experience for the benifit of others.

Time Warp has constanting proved to be a source of counter-
intuitative results. Over a year ago, we removed about ten percent of
the messages in an application thinking that this will make it go
faster, only to find that it completely broke the system. Indeed, we
are even still able to be completely wrong on the consequence of a
change to Time Warp.

Our tools are either graphical or statistical. In both cases we
take a log file the system made of everything which happens. We can
do this for short simulations (around 20 seconds on 32 nodes). With
this complete log file we can find several tibbets. The graphic tools
give us a idea of what the simulation was doing. Time Warp allows
the simulation to go down wrong paths. We can get a idea of how
many and how far these incorrect paths are executed. Offen the
difference between a good run and a bad run was not noticable on the
graph. Basically it just took longer, this lead us into the study of the
delay times in the queues.

The Time Warp Environment:

For this paper, Time Warp refers to a special purpose operating
system for running discrete event simulations on multi-processors
built and maintained by the Jet Propulsion Laboratory for the Army
Model improvement program (see [Jefferson 87]). To run on top of
Time Warp, a simulation must be broken into objects which schedule
events for each other via messages. We will call such a collection of
objects an application. The Application layer (in theory) is
transparent to the number or kinds of computers it runs on.
Currently, the application objects are statically assigned to nodes
at run time, and hence knowledge of the application is used to load
balance the nodes. The simulation time, that is the time that
simulation events are scheduled is called virtual time in Time Warp.

By the Time Warp Layer, we mean the layer of abstraction
between the objects on the application level and the lower machine
dependent level. In practice, this lower level can be viewed as
message passing kernal which logically connects any two nodes.
Time Warp has been ported to a number of machines, a network of
Suns and a Butterfly, for examples, but results of this paper are
based on Time Warp running atop the Mercury message passing kernal
on one of the Jet Propulsion Laboratory's Mark Il hypercube with 32
nodes.

For the purpose of this paper, we may view the application has
senting positive messages, which may or may not be correct. Time
Warp will rollback an object which has gone down an incorrect
simulation path and Time Warp will send negative messages (often
called anti-messages) to cancel the effects of the incorrect postive
messages. Time Warp also has system messages of which the most
important for our purposes are those used to compute global virtual
time (also denoted by GVT).

We will talk about two applications. The important application
is ctls87, which is called STB87 in [Weiland 88]. Ctls87 is a miltary
like simulation with 3 phases and a reasonable run time of 20
seconds. The other application is an artifical one called slooow.
Slooow is a fully connected model designed to give wrong answers
when out of synchrony. Slooow stresses the message subsystem as
well as violate everything we know about what makes a good Time
Warp object. It has large fan in and large fan out as well as a very

high communication to computation ratio. Moreover, slooow is time
driven and (at least in theory) completely paraliel.

Graphic Tools

Since there are two kinds of time in a simulation, real time
and virtual time, it seems natural to plot graphs with the two times
as the different axes. The virtual time of an event is easy to
determine, however to obtain the absolute real time of events
several nodes required some care (see synchronizing the clocks
below). The first graphic was of execution (real) times of an objects
vs the virtual time at which they were running. The real execution
time of an object was graphed as an horizontal interval at height
given by the virtual time of the execution.

The second graphic was for messages. Each message was
represented as a line from (real sent time, virtual sent time) to
(real receive time, virtual receive time). A Silicon Graphic's lIris
Workstation was the target machine for the graphics. We could use a
wide range of colors for the different objects, or just a couple
differing messages and anti-messages or good positve messages
from those which were cancelled.

The log file must be create while running, it is stored in RAM
and put into a single file after the execution of the application is
over. These files are quite large, a typical simulation which runs
about 20 seconds could produce about 70,000 messages and 180,000
execution pieces. Each execution log entry requres at least one
object name, one virtual time and two real times, and message log
entries required twice the room. The time needed to read the output
file was long. A program that coded this information into binary
format was used to decrease the set-up time of the graphics
programs.

It is difficult to overrate the impact of graphics. Our pictures
showed objects running down incorrect paths, ... Effects one has
dicussed with great difficulting using words, become look at this....

Mplot and fplot

Time intervals:
One of the results of the graphics was the interest in delta
time intervals as opposed to total time. There are operations in

Time Warp whose total time investment was small. But these same
operations required large time investments each time they were
done. The graphics plots were showing large time periods where
nothing was being done.

Interestingly enough, the largest problem was a race condition
in the Mercury program. The problem was known to those people
which were maintaining Mercury. They were using spin locks to test
the bidirectional channels for which way it was now. The code now
spins at different speeds on different nodes.

After the Mercury problem was fixed we tested it by trying to
find all large delta times in Time Warp. Two time periods were on
the order of 50 - 100 milliseconds, garbage collection and a printf.
(Communication with the outside world from a hypercube is much
slower than innernode communication.) Garbage collection is done
more or less at the same time by all the nodes.

Somehow getting the clocks in synch and trying to message the
performance on Mercury got into the act. We designed hc
(hypercircle) to show the channel use between nodes and the amount
of conflict for the use of these channels. We pumped the messaged
times and it looked like there was alot of conflict.

Histograms:
We like it so much we did ... and ... and even ...
hc

Other Tools

The GVT collection

The zip forward

The Hardware Race

The speed of anti-messages

References

[Jefferson 87] Jefferson, David, et al., "Distributive Simulation
and the Time Warp Operating System." ACM
Proceedings of the Symposium on Operating System
Principles, (November 1987),

