MATH .?4 | L BELLENOT
MWF Qi35 - 1050 - |

HEaLT -Apos+ol’5" . ‘C_C_I-!C(A\us‘ VO) I— (ZW\ eAt>

TESTS ! Midterms (ove hour) Wed, Nov 14
| ad Wed. Dec?

| | Final (H+vee hours) Feu, Feb L
HON\EVOOEKi Gevzera“ﬁ EFea\&'\ . howmewor e will'
be aSS\av\eo{ Aadr \3 avd will be aune -Hye
hext ¢@ss peviod. An 85&%»\m@\+ will

cousist of Fwe or BT Problems | o which
fwo of Havee will e *’F voblems, The
*Fro\b\ems dve to be written Up fuvned Lm>
and %rac\ed. These *Fvob\ems dre Yo ‘oe
Yowr  owm wo(\e‘_D hewce e hovor %asjrew\
dpplies 4o thewm. on
GRADES: a As a rule of +ﬁvmz\b) 50% 11 __Cﬂ_l,_ C&faeled
Papers IS Wﬁ({u-\fEA Yo @ C&’aC\e ot T




[ A

sy

T ey n e
[erE S

o
St

YTTES N

il

ERE

W

BN

BN e,
=P Kond

&

b
b

i

Gad, Known

oy

i

-
a

‘L'.)

I3

1

Jy ey

<,

)

p g

@ 51

k)

et

i

»

f
e

1

7

27
oy

day

'

L¥

Ane

.

)

o

b
LA

O GG

i
Py

LR

7

o3
=
=
o~
o
]

wﬁ‘,"

AR

7
Cre

§
H

j

N

N pr

i)

ot

5
i

N
BRI

N
w6l

ZENN

g T

SO

8

P

oy

v

-

“

Yy

i

L

2N h

TS

i34

=
3

'
H
i
i
t
|

M

b §
PRAS

!
!
i

o
e

P
b

:
[S NN

i

ond

s

3 -
i

b Oh




-

Math 74

MODEL: A Biological Epidemic.

Tn a total population of n individuals there are, at any time t, y(t)
infecticus carriers of a contagious disease, =x(t) mnembers of the population
who are susceptible to the digease, and =z(t) individeals who are recovered
and immune. We have x(t) + y(t) + z2(t) = n for all t. The following
system of differential equatione, know as the Kermack-McKendrick equations,

" characterize the epidemic.

x(t) = = A x(t) y(z)
(%) y(e) = A x(t) y(e) ~u y(e)
2(t) = u y(e)

COMPUTER PROBLEM:

Write a program which will solve the set of differential equation (%) for

1) the number of susceptibles, =x(t);
2) t¢he number of infectives, y(t);
3) the number of recovered, =z(t); and

4) the epidemic ecurve -~ x(t) (1.e. the rate which new disease occurs);
given that t is the time in days, A = 0,001, u = 1/14, = = 2000, =x(o) = 900,
y{o) = 10 and 2{(o) = 90." : L -

‘VYour pregram must have the following features:

1) It must use the iterative form of the improved Puler's Hhthod with the
nuwbey of iterations being three. -

2) 1t must use the interval of computation h = 0.1 days but print out
the results !or every day up to fifteen days only.

Plot on a single graph paper the varisbles =x(t), y(t), =(¢) and - ;(t) versus
time ¢.




' NUMERICAL METHODS FOR SOLVING DIFFERENTIAL EQUA‘!'!ONS'

We will develop two methods for numerically approx:l.mating the solution to first
order (non-linear) systems of ditferent:ial equations with initial conditions.
Our IVP has the form . . ’
‘(*) - X = £(X,t)
X(o) = Xo.

where X{t} 1s the n-tuple (xl(t), -xz(t), oes xn(t)), Xo is .the n-tuple
(xl(o) » xz(o)....xn(o)). t 48 "time" and £ d1is a n-vector valued function.
of the n+l variables xl(t), xz(t),...xn(t), t. We will solve (®) for

t > o, the solution for t < o 1s similar. ‘ '

The basic idea ie to "divide" the positive t-axis into discrete points t, =0,
tyo £y ces , To facilitate this process, let h be a "amall" positive number,
called th_e interval of computation, and define t, =0 and t ., =t + h for

n = 0,1,2, ., Since we ave given X(t ), our problem is reduced to producing
a "good" approximation for X(t 1) given & "good" approximation to X(t ). Ve
first ‘attempt the case when (%) is an ordinary differential equation (Le..n = 1)
and latter extend to the general case. We use the short hand x for X(t Yo
FULER'S METHOD:

We are trying to solve the D.E. dx/dt: = f{x,t), given x(o) = x, = x(to). Suppose
we have obtained x, and we are trying to make the leap to =  41° Euler's idea
can be expreseed as "if h is 'emall’ enough the t.engent line at X will be a ‘good’
appruximat:ion to the curve x(t) near t a Operationany. this means we assume
thet the curve and the tangent line are: the same between t and ¢ n+1 It is
simple analytic geometry to obtain x w1 = % 4+ h d » where dn is the slope of
the tangent line st x , that is 4 = dx/dtit - f(x » t). Let us do a simple
example. .

Exemple: Let's take the IVP % = t, x(o) = L. FHere f£(x,t) =t. Lat h= L. The
table below gives the values of xn, ne 0,2,2,3,4,5; given by Euler's method and

by the exdct solution =x(t) = -14 t2 + 1.

timé 0. 10 2. 3. ! ‘. 50
Euler's x(t) 1.0 1.0 2.0 4.0 7.0 11.0
True x(t) 1.0 1.5 3.0 5.5 9.0 13,5




»

Let's calculate x4, given x d3 - :(;s,ts)'- £(4,3) = 3, so x; =x,+hd

3} 379"
h+3=17, Please note the way the error increases with time. A graph is enlighting.

IMPROVED EULER'S METHOD: _
The "improvement" 1s the observation that it is the secant line through .*n and

X iv not the tangent line at..xn, that is the "good" approximation for our
purposes. Since we do not know what the value of xn+1‘“is, we try instead to -
find the slope of the secant using = and the value ‘. obtained from Raler's

method (unimproved.) whl

Our best guesses to the slope of the curve x(t) at t and tn+i are d = f(x ,t )

aid dn+1 = £(x 1 © 1) respectively:. Now if - x(t) 15 a nice curve and h ie
“small", then the slope of the secant’ should be some sort of "average' between these
(A5 extremes“ " With this in mind we let S(l) 2 [d + dn+l] The line thtough
“xﬁ' vith slépe S( 1 i{s our apptoximation to the secant lipe.‘ Annlytic geometry
é:i = ;? +h S(l). The student
may ‘amuse himself (or hetsalf(sorry Tracy)) with the observation that this {m~

provement is enough to give the exact values in the very simple example above., (Of
course, in general, this will not heppen.) ) .

gives the better approximation to x(tn+1) as

But why stop now? We have a "better" approximation to x and thus we can obtain

o+l
a "better" approximation to the slope of the secant. In fact, let d(l) = d

f(x ,t ) omd d(l) = £( gii’tn+1>’ then thq slope of the secant ahould be

(2) = E- d(l) d(z)) and a "better apptoximation To x(t 1) ‘would be
(z> ; (z) = |
n+1 - X + h S ’

This pfoeess can be repeated any finite number of times. Let us formulata this by.

defining d(k) = d o f(x.,ti) and d(k) = f(x gti; tn#l)’ letting s(k*l)
-2<d§k’ 5""1)) and obtafning the value ";(:;1) “% +h s(k"'l), Ve Kave arrived

at the iterative form of the improved Euler's method with k+1 iterations. It can
bé showm that if more than two iterations ave used that the order of the erfoz
reaches and remains at a fixzd value. A very "roasonable“ approximation.

EXTENSION TO THE CENERAL CASE:
This 1a quite simple. Since £(X,t) is an n-vector valued function, let 1ts ish
component-be £ (x t) (lce. £(X,t) = (f X,e), f (x.t), eee (X,t) )  VWriting

this 1n long hand we have by equating the 153-componeato of X and E(X,e):

X, = £, (x,(2), xz(t'), xn'('t)'). t).




So to make the leap from (xi)m to (xi’m+1 we only need to know (xa\ » for
J = 1, “eem, if we are using Euler's method. Por the improved Buler'a .

)(kﬁl) » We need only to know (x )(k) .for 3 - 1, ...n._

to obtain (x g

This a very small amount of Numerical Solutions to Differential Equations. " The
subject matter is very useful, challenging and interesting.

ﬁE SURE TO BRING THIS HANDOUT TO MATH CLASS WHEN CLASSES START AGAIN JANUARY 7.

DUE DATE: January 18, 1974, in the Preshman
Division office. Pargons #267

Put the standard information on ‘the upper
right-hand corner pf the first page.
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Matu 14

TESTING  THE TNDEPENDENCE OF W VECTOES
TN AN N - DIMENSIONAL VECTOR  SPACE,

WE CAN AJVME WM< W (wh5?3
WR\TE EACH VECTOR AS A ROw M A MATRIX. |
THE  FOLLOWING GPERATIONS ARE ALLOWARLL -

(() TNTERCHANGING ANY Two ROWS
(L) MUOLTPLYING ANY Row BY ANVY

NON - ZERO  SCALAK.
(CLL> ADDING ANY ROW TO ANGTREE’\'\’Q\A)@'

AT ANY  POINT IN THiS PROCESS, THE
Rows TREPRE SENT m - VECTURS EACH TN TYE LINEAR |
SPAN OF THE CRIGINAC M- VECTORS, BUT,IF
THERE APPEARS A Row OF ALL ZEROS, THEN
THE VECTORS (THE ORICINAL M - VELTORS ) ARE DEPENDEVT
MORE GENERALLY | THIS PROCESS IS REVERS\BLE (ie
TF Vou CAN GET FROM MATRIZ A TO MATEIX B |
VIR A FINITE MUMBEE OF APPLICRTIONS OF OFERATION
(i), (i) ORULLY § THEN THERE ' A FINITE NUMBER|

OF APPLICATIONS OF OPERATIONS OF ()5 (60) TR (UL
THAT WiLL TURN MATRISE B INTO  MATR( Ay
TO SEE THS NOTE THAT TO UNDO (L) JUST DI (i)
AGRIN WITH THE SAME ROWS s TO ONTO (D) LT T
(LD WiTH THE RECIPROCAL SCALAR, TO ONDo ADDITION
OF Row A To RoW B (i), ONE CAV PO THE




PRGE 2

FOLLOWING : MOT®LY Row A B —1 (&) THen
ADD THE RESULTING ROWA TO ROWB (i) AND

LASTLY | MOLTIPLY ROW A AGAIN BY =1L (&),

LET'S SUM UP WHAT WE HAVE QST SHOWN
WiTH THE FOULOWING §

THECREWM At SUPPOSE WE HAVE WRIMTEN m

VECToEs IV AV n -DIMenSIOVAL VECTOR JPACE

AS THE ROWS OF A MATRIZE M.y AVD FURTHEC
SUPPOSE THAT THE MATRIZZ N 1S OBTANVABLE
FRom M BY A FININE NUMBER OF ORERATURS
OF (i), L) oR (u.L) THEN THE RowS OF N~
CON%\DeEeD AS" n - DIMENSIOVAL VECTOPS ARE

IN THE LiveAe SPAM. OF TiE ROWs oF M. AND
Comva@a_g)

COROLLARY ; THE RowS OF M ARE INDEPENDENT
IF AND ONUY IF, THE Rows OF N ARE TNDEPEV -
DENT, | e
proof:  Surpose THE ROWS OF N ARE DEFENDENT,
THen THE ROWS OF N ARe IN THE LINEAR l
SPAN OF K VeECTgResS | WHERE K < m. HENCE
BY THECREM A THE ?ou)S OF M. AKE IN THE

LINEAT. PAN or < VECTORS. AVD THUS,BY
THEOREM, 15 OF APOSTOL, THE ROWS OFM

ARE DEPENDENT. THE COMVERE ForLows By

-~ PN e NE M MmN N

~TAYNT 7> A AN, A\



PPGE B
WE RAVE CHANGED THE TROBLEM OF TeSTIMG,

TNDEPENCE OF THE ROWS OF M\ TO THE TRORBLEM

OF TESTING INDEPEMCE OF THE TROWS OF N BUT
Ir MARY BE JUST AS HARD TO DUE THE LATTER,

THEe REST OF THIS HANDOUT Wil SHow THAT
WE CAN Pick N To BE N *ow — CANOMICAL-

FORM | AND FDR SucH A MATE»:%)THE TEST OF
INDEPENCE 1S TRIVAL,

A MATRISE 1S SAID To B TN oW —
CANONICAL FORM IF THE FOLLOW ING AE

TRUE !

(3) THE FIRST NoN-ZERo ELEMENT IV
EAcy Row 1S A ONE, ( THERE MAYBE

Nl NoN-ZERD'S AT ALL)
(b) Iv A COLUMN|WCH A FIRST ONE
OCCURS AL OTHER ENTRIES ARE ZERD

(€Y IF IV ROW X, THE FIRST OME IS
N THE BY eowmn. AND IV Row ¥, THE
FIRST . ONE 15 THE S CoLUMN | THEN
B< 3 IF, AND OMY IF &<,

Cord ANY MATRVZE M., THOURGH A FINTE
Numper OF AppLIcATIONS OF (0,6l OR (i), BE

EQUIVALENT TO A NMATRIZE AT IV ROW - CANONICAL
FORm ©  THE ANSWER 15 YES | AND WE SKETCH

B Peoot DELOW.



PAGE 4

CTAKE  THE FIRST ROW WiTH A Mw - ey

ELEMENT . AWVD LET THIS BE THE ELEMENT IN
2w R AND Cotumn C, MAKE ALL THE OTHEIR ROWS

ZERD IN CoLomny C BY FIRST (i) MAKING OBR

ELEMENT 1N ROw B Anp Cowmn (. THE ADDMVE |
Invvepse )THEM () TO ANNHILATE THE ELEMEVT
In ANOTRER 'EOUO Bur THe SAMe COMN, WITH

THIS Compere Use (i) To MAKE THE ELEMENT
Iv Tbw B AVD Cowumn € OME,

REPEAT Th1S PRocesy UNTIL AW 'E’ows
ElTHeR HAVE A FIRST onveg , Ok ALL ZETC0S.
NOTE THAT ONCE A COLumn  HAS BEEN CHANGED
SO TO INCLUDE ZERO'S WitH AT MAST 4 (oME) ONE |
QUK PROCESR HAS NO EFFECT ON THIS COLUMN .

| FWALL\R) WE™ CAN ORDER THE ROWS 0 TO |
SATISFY (), DoNE '
we A)éCD AN EASY ~<EST FOR INDEPENCE

OF Tue TROWS . W A TOW-CANONICAL MATRIZE,
WE FOZM\)LA—re THS INQ

THEOREM B IF J\T 'S A Tow - CANONICAL MATE;
WITH m -Rows (e, ™ - Vecrors ), THEN THe ROWS

OF N ARE INDEPENT EXACTLY WHEN EACH OF TH
m Rowd HAS A HRST OME, |




PAGE 5

Proot: IF OUR MATRI¢ N HAS FEWER
THEN M FIRST ONES  THEN 1T HAS A Tow
ENTIRELY OF ZERO'S AND THUS IS DEPENTEUT
BY THE CoRoLARY ABDVE,

Cm\)vu’aseue = N HAS m Rouws
EACH WITH A F':ESr ONE | We NeeD To SHOW

THAT THESE ROWS oF N ARE:’ INDEPENDENT,
SLUPPoOE NOTy THEN THeRe EXIST SCALARS

C, )cz) o ,Cm) NO AL ZEROD, Suck THAT

Z e R _‘-? ZER0 VECTOR (w%@e s

THE ﬂ‘?bu)) JET © BE BETWEEBY 4 AND M.
IN THE & Row | THERE s A& FIRST ONE IN
SAY COLUMN ), IN ALL OTHER RowS THE Jr
CoOLumn HAS A 2ERD. SOXIN OED&’E FOETHC
SuMm ABWE TO BE THE ZERD VECTOR, THE
SUM OF THE ELEMENTS IN THE St coLumn MUST |
BE ZeR0; BUT THIS Sum 1S JUET C, HEAKG
ALl ¢ -'o L-—) )2, M. AND THE CONfEPthCT\OAJ

E%TmsusHéD THc THEOCEM ,




PARGE (&

| EANTPLES!
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MATH T4 FINAL JHOW ALL UOOEK') USE ONE SiDE OF PAPEER
- oL L BE NEAT 3 AL PARTS" wort10 §Ys, 200 ToThL.

O, A) Show L €, Sinx, AF is 3 independent e,
B) If T:V—=W is a linear wap between vector spaces
Show N = wull 2pae of T s 2 veckor subspace ot'V,
‘ C> Yolve the VP La/-*DL\S:O Wey=1.
1 Let () (D-1H (D "2)%3: -?(ﬂ ~ Finel Yhe %emexa\ 0lution
4o (%) whewm, - 3
: /§3 fw=z o, B) Ffw)=1° ¢) *) = 't
T Let CloAT be oo condinvous veal-valued funchions on To,4]
amd ket W= {fecto,a] | [ fwde =1%, - |
A) Dhow etk W is we¥ a Subspace.
B) Show That W s @ ot

T A) how that (! O> amg, [ 0) have the sawme
ORavackerishic. ooy o

@l bwr awe not Sumilae,
B) Find €% kot for (13) @i (59).

)
C) Sowe ¥ =AX ,95@:(»;) w both cases,

T Lek V ke @ Vector 3pace md Av—aV a linedr wmap,
Suppose A* = A,
A} Suppose xeV and y= Ax#0, Show ' s an e(%em\/&‘ﬂLOW
Lov B, Wwat is the e{%evwa\ue? |

B) Suppose xeV Aud 2= x-Ax #0, Show 2 is v
egenvector Jov A, whatis the eigenvalie |
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L. whe dy= (1) H0y= (1), duy
\Dﬂ% Uou- UGVINE

“TL ket U ) amd u ) be indeperdent solwkions
P
3(0 *\Ae_ S&wvm\ ovoer \\OW\O%QV\LLOUS -.D'E‘
W) + AOYWE+ by = O,

}ve‘\" w(_-k} - de-\— (Q\(‘t) U»z,({—)
| i) ww)/’

A\) Show Hat Wy s Wy dve v\eve\f Zex0o \'D‘&QJ&‘”)
U, dmd u{ ave weler aevo &o%e)(’.'\ef) u, gdnd ug ave
ieNexr z.evo ‘\‘O‘%@\’\l\e( ama w{ dma w, dre nevey Zevo
foge e, »

B) S(L?gose a amd b ave poinks wheve U @)= )=0
Awcl ov all S between @ and b, u\(g)#D.

Show U/ (@) U/L) < O,

C.) %wppose o amd b ave '\Doiv'\\s as in _B), Show

Hat theve s @ point & behween aamd b Wheve
We(€) =0. [HINT! Wx) Cannat change 3iqn. w}‘ﬁ?j
'D) Use part C) o Show Hat bekuween awskoo.
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¢ ' Math 74

MODEL: A Biological Epidenmic.

in a total population of n 4ndividuals there are, at any time t, y(t)
infectiocus carriers of a contagious disease, x(t) members of the population
who are susceptible to the disease, and z(t) individuals who are recovered
and immune. We have =x(t) + y(t) + z2(t) = n for all t. The following
system of differential equations, know as the Kermack-McKendrick equations,

" characterize the epidemic.,

x(t) = = A x(t) y(2)
(*) g(e) = A x(£) y(&) - u y(t)
z2(t) = u y(t)

COMPUTER PROBLEM:

Write a program which will solve the set of differential equation (%®) for

1) the number of susceptibles, =x(t);
2) the number of infectives, y(t);
3) the number of recovered, =(t); and

4) the epidemic curve - i(t) ({.e. the rate which new disease occurs);
given that ¢ 1s the time in days, X = 0,001, u = 3/14, n = 1000, =x(o) = 900,
y(o) = 10 and z{o) = 90. R

Your program must have the following featutes:

1) It must use the iterative form of the 1mproved Euler s Method with the
. numbex of iterations being three.

2) It must use the interval of computation h = 0.1 days but print out
the results for every day up to fifteen days only.

Plot on a single graph pasper the variebles x(t), y(t), =(t) and - ;(t) versus
time ¢t. '




' NUMERICAL METHODS PFOR sox.'vmc DIFFERENTIAL Equnxons'

We will develop two me:hods for: numerically approximating the solution to first
order (non-linear) systems of differential equations with initial conditions.
Our IVP has the form : .
‘ (*) - X = £(X,t)
X(o) = xo,

where X{z) 4s the n-tuple (xl(t), -xz(t), sl xn(t)), xo is .the n-tuple
(xl(o) v xz(o)....xn(o)), t 18 "time" and f is a n-vector valued functiom:
of the n+l variables xl(t) ) xz(t) ,...xn(t) , to We will solve (®) for

t > o, the solution for t < o 1s similar. '

The basic idea 1o to "divide" the positive t-axis into discrete points t, = 9,
tys Ty cos , To facilitate this process, let h be a "amall'" pos:l.tive number,
called thel interval of computation, and define to =0 and ¢t ot ™ tn +h for
n=0,1,2, °** _ Since we are given X(t ), our problem is reduced to producing
a "good" approximation for X(t 1) given a "good" approximation to X(t ). We
f1rst ‘attempt the case when (%) 48 an ordinary differential equation (Le. n = 1)
and latter extend to the general case. We use the short hand X for X(t Yo
EULER'S HETHOD:

We are trying to solve the D.E. dx/dt = £{(x,t), given (o) = x, = x_(t:o). Suppose
we have obtained x, and we are trying to make the leap to X ey
can be expteased as ":I.f h is | 'small’ enough the :angent line at = will be a’ ‘good*

Ruler's i1dea

apptoximation to the curve z(t) near ¢ o Operationally, this means we assume
tha: the curve and the tangent 1line are. the same between t and ¢ n-O-l. It is
simple analytic geometry to obtain =x SR N 4+ h d " where dn is the slope of
the tangent line at x , that is d = dx/dt |t - f(x » ). Let us do a simple
example.

Exemple: Lec.'s take the IVP x = ts x(o) =1, Here f£(x,t) = t. Let h = 1. The
table below gives the values of x , n = 0,1,2,3,4,5; given by Buler's method and

by the exact solution x(t) = -;- e? &1,

tim& 0. ) 1. 2. 3. ° ‘o So
Euler’s x(t) 1.0 1.0 2.0 4.0 7.0 11.0
True x(t) 1.0 1.5 3.0 5.5 9.0 13,5




Let's calculate xa, given Xy3 63 - f(gs,ta)‘- £(4,3) = 3, 8o X, = X4 +h d3 =
4+ 3 =7, Please note the way the error increases with time. A graph is enlighting.

_IHPROVED EULER'S METHOD:
The "{mprovement" is the observation that it is the secant line through 'in and

X .j» 7Tt the tangent line ag.'xh. that is the "good" approxiyation for our
purposes. Since we do not know what the value of‘ xn+1‘“1a, we try instead to -
find the slope of the secant using x and the vﬁlue ‘X obtained from Ruler's

method (unimproved.) nhl

Qur best guesses to the slope of the curve =(t) . at t and tn#i ‘are d - f(x ,t )
and dn+i = Z(x 1 tn+1) ‘respectively., Now if x(t) is a nice curve and h 13
"small", then the slope of the secant should be some sort ‘of "average" between these
two "extremes".' With this in mind we let Sil) 5 ld + dn+1} The line through

'x#' with sloépe S(l) {8 our approximation to the secant line. Analytic geomecry

gives the better approximation to x(tn#l) as xgii = x + h s‘l). The student

may ‘amuse himself (or herself(sorry Tracy)) with the obaetvation that this im-
provement is enough to give the exact values in the very simple example above., (Of
course, in general, this will not happen.) _

But why stop now? We have a "better" approximation to X and thus we can obtain
a "better" approximation to the slope of the secant. in fact, let d(l) C d

g(gﬁ,tn) and d‘l) - f(x(li,t 1), then the slope of the secant ahould be

(2) - l#(d(l) +-d(2>) and a "better" approxination ‘to x(t“+1) ‘would be

g; 5 x: +hs<2>

This ptbaeos can be repeated any finite number of times. Let us formulata this by'

defining d(k’ =d £ ,t) and d‘k’ f(x‘fi. t 4y)» letting s(k*l)

-(d(k) e 2 $k+1)) and obtaining the value 5511) = zﬂ +h 3:k+1). We have arrived
at chg'iteracive form of the improved Euler's method with k1 fterations. I¢ can
be showm that if wore thsn two iterations are used that the order of the error
redches and vemains at a fixed value. A.very "raasonnble apptoximation.

EXTENSION TO THE GENERAL CASE:

Thid.ia quite simple. Since £(X,t) is an n—vector valued function, let 1:: tJl
component-be £ (X €) (1.ao £(X,t) = (I (xX,t), 2(X,t), ees f (X,t) ) VWriting

this in Iong hand weé have by equating the ish'eomponents of X and “E(X )

§1 - £, (x, (1), xz(t), °eo % (1)), t).




So to make the leap from (xi)m to (xi)mfl we only need to know (xa\m, for
1 =1, veen, if we are using Fuler’s method. For the fmproved Euler's .

. -' k S
to obtain (xi);ftl) » we need only to know (xj):;;, for ‘3 =1, *°n.

This a very small amount of Numerical Solﬁtiqns to Différential Equations. The
subject matter is very useful, challenging and interesting.

ﬁE SURE TO BRING THXS HANDOUT TO MATH CLASS WHEN CLASSES START AGAIN JANUARY 7.

DUE DATE: January 18, 1974, in the Freshman
Division office, Parasons #267

Put the standard information on ‘the upper
right-hand cormex 9! the first page.




MATH 74

This is an open book, note and Library exercise, but work is to be done
independently. Remember, resulis about vector spaces are fair game.

N

To prove A = B as sets, show both A € B and B C A,

To prove A C B show either (a) everything in A is in B (in symbols,

x €A 2# x € B) or (b) everything mot in B is not in A (in symbols,
x§B :%>'x ¢ 4).
k

Definition. A linear combination 24 CiRys of a finite set of vectors
' & k '
{x;,***,x,}, 1is an affine combination if I e =1,
i

Definition. A subset P of a vector space is a flat if P containé all the

affine combinations of the non-empty finite subsets of P.

Theorem 1. The following are equivalent:

(1) P 1is a flat.

(2) For each p € P, the set {x-p: x € P} 1s a vector subspace.

(3) P is the translate of a'unique vector subspace. (i.e., there is a
vector w. and a unique subépace V, such that P=w+ V=

{w+x: x € V}.)

Theorem 2. The flats of ]R3 are a’ithef:
(1) a single point,

(2) a straight line,

(3) a plaune,

or

(4) the whole space.




Theorem 3. A flat P 1is a subspace, if and only if, the origin belongs

to P.

Theorem 4. The intersection of a set of flats (possible infinite) is either

empty or a flat.

Theorem 5. Suppose we have an linear system of equations AX = B, where A
is an n X n matrix, B 18 an n columm vector and X is the unknown =
column vector. Show that the solution space of AX = B (i.e., {X: AX = B})

is a flat or empty. Furthermore show that this flat is a subspace if and

only if B is the origin.
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