graph theory

(mat 5932)

spring 1987 instructor: Bellenot

office 218 LOV; office hours MWF 12:30-1:20 & by appointment.

Text: Bondy & Murty, <u>Graph Theory and Applications</u>. Coverage: as much as time permits, more or less in the text's order.

Tests: There is only one "in class & closed book" test. It is tentatively scheduled for 11 Mar. and will be worth 20% of your grade. The remaining 80% of your grade is based on "homework".

Grades: The relaxed 87.5%, 75%, 62.5%, 50% cut-offs.

Homework:

1. It must be your **OWN** work!

- 2. Graded on a 0-10 basis on your reasoning, your ability to express your reasoning, neatness and your English.
- 3. Failure to follow the rules below cost a point a piece:

A. Must be on 8-1/2 by 11 paper.

- B. Must be written in ink (or typed).
- C. Must use only one side of each page.
- D. If they require more than one page, then the pages must be stapled or paper-clipped together.

4. Late work isn't accepted.

5. Your homework average is the average of your best 4/5-ths.

Due friday 9 Jan: 1.2.3 Due monday 12 Jan: 1.5.4 Due wednesday 14 Jan:1.6.5

Due friday 16 Jan: 1.7.2

Graph Theory Test Spring 1987 Problems 2 & 3 are worth 20 points, all others worth 15 points.

1. Let $G = K_{n,m}$ where $1 \le n \le m$. Find the constants: $\omega, v, \epsilon, \delta, \Delta, \kappa, \kappa'$. For what values of m and n does G have an Euler cycle? For what values of m and n does G have a Hamilton cycle?

2. Give examples: A connected 3-regular simple graph J with at least two cut edges. An edge cut of K which isn't a bond. A graph G which is isomorphic to its complement 6°. A simple connected graph H whose diameter and radius are equal.

3. Give counter-examples: If v is a cut vertex of a graph H, then {v} is a vertex cut of H. A vertex v in a cycle of a simple graph J isn't a cut vertex of J. A graph G with two distinct walks from x to y has a cycle. A matching M of K, which isn't properly contained in any other matching of K is a maximal matching of K.

4 Prove: T is a tree, if and only if, T is acyclic and for any edge e not in T,

T + e has a cycle.

5. Prove: If G is k-regular, G has 2k vertices and the length of any cycle in G is \geq 4, then G is isomorphic to $K_{k,k}$.

6. The graph G has five vertices z, y, x, w and u. Below are drawings of the five subgraphs of the form G-v for v a vertex of G. Your job is to reconstruct G and label the vertices in G and the subgraphs below.

Graph Theory
Final Problem Set
Spring 1987

Due: 28 April 1987 @ high noon

The Reconstruction Problem

Given the graphs G_i for i = 1 to n, construct a graph G with vertices v_i for i = 1 to n, so that G_i is isomorphic to $G - v_i$. The reconstruction problem asks if G is uniquely determined (when n > 2). This problem is unsolved in general but many special cases are known. (For example the last problem on the test was a special case of this problem.)

- 1. A. Give two non-isomorphic simple graphs with n=2 and and the same subgraphs G_i .
- B. Show how to compute $\varepsilon(G)$ from the $\varepsilon(G_i)$'s.
- C. Show how to compute the degrees of the vertices v_i in G.
- D. Show how to compute $\omega(G)$ from the $\omega(G_i)$'s.
- 2. A property P is said to be *recognizable* if for each graph G with n > 2 vertices, it is possible to determine if G has property P just from the subgraphs G_i . Show the following properties are recognizable:
- A. G is k-regular.
- B. G has a isolated vertex.
- C. G is simple.
- D. G is connected.
- 3. Show these are more recognizable properties:
- E. G is a tree.
- F. G is a block.
- G. G is eulerian
- H. G is bipartite
- 4. Prove: If G is disconnected and G has at least 3 vertices, then G can be reconstructed.
- 5. Prove: If the simple graph G is eulerian with at least 3 vertices, then G can be reconstructed.
- 6. Prove: If G is a tree with at least 3 vertices, then G can be reconstructed.

Graph Theory Final Problem Set Spring 1987

Due: 28 April 1987 @ high noon

The Reconstruction Problem

Given the graphs G_i for i=1 to n, construct a graph G with vertices v_i for i=1 to n, so that G_i is isomorphic to $G-v_i$. The reconstruction problem asks if G is uniquely determined (when n>2). This problem is unsolved in general but many special cases are known. (For example the last problem on the test was a special case of this problem.)

- 1. A. Give two non-isomorphic simple graphs with n = 2 and and the same subgraphs G_i .
- B. Show how to compute $\varepsilon(G)$ from the $\varepsilon(G_i)$'s.
- C. Show how to compute the degrees of the vertices \boldsymbol{v}_i in \boldsymbol{G}
- D. Show how to compute $\omega(G)$ from the $\omega(G_i)$'s.
- 2. A property P is said to be *recognizable* if for each graph G with $n \ge 2$ vertices, it is possible to determine if G has property P just from the subgraphs G_i . Show the following properties are recognizable:
- A. G is k-regular.
- B. G has a isolated vertex.
- C. G is simple.
- D. G is connected.
- 3. Show these are more recognizable properties:
- E. G is a tree.
- F. G is a block.
- G. G is eulerian
- H. G is bipartite
- 4. Prove: If G is disconnected and G has at least 3 vertices, then G can be reconstructed.
- 5. Prove: If the simple graph G is eulerian with at least 3 vertices, then G can be reconstructed.
- 6. Prove: If G is a tree with at least 3 vertices, then G can be reconstructed.