FUNctional Analysis

MAA 5506 Functional Analysis I

Instructor: Bellenot

Fall 1989

Office: 218 Love

Office Hours:

MWF 12:45 - 1:15 & by appointment

Text: Carl L. DeVito, <u>Functional Analysis</u>, Academic Press 1978.

Coverage: The entire text with additions as time allows.

Grades: The easy-going 85%, 70%, 60% and 50% cut-offs.

Midterm: This test is "in class" and "closed book" worth 30% of your grade. Tentatively scheduled for Wednesday 15 November 1989.

Homework: The remaining 70% of your grade will be determined by homework problems. Some (but perhaps not all) homework problems will be graded on a ten point scale. Only the top 90% of your graded homework is used to compute your homework average.

Homework Rules:

Must be your **OWN** work!

Must be neat and in clear English.

Must be on time -- late homework is <u>not</u> accepted.

Must be on 8 1/2 by 11 paper.

Must be written in ink.

Must use only one side of each page.

Multiple pages must be stapled together.

Assignment 1: Read the first two sections by Friday 1 September.

For Wednesday 6 September do Problems 1 & 2 in Section 1 and Problems 1, 2 & 3 in Section 2

Functional Analysis Midterm Fall 1989

- 1. Let D: $C^1[0,1] \rightarrow C[0,1]$ be the differentiation operator (that is Df = f'). Show that the graph of D is a closed subset of Y = $C[0,1] \times C[0,1]$ (Note Y $\neq C^1[0,1] \times C[0,1]$).
- 2. Let X be a normed space. If $X^*\supset (f_n)$ has f as a $\sigma(X^*,\ X)$ -cluster point, then $||f||\leq lim$ inf $||f_n||$.
- 3. Let X be a LCS space with dual X^* . For $X \supset A$, define $A^\circ = \{x^* \text{ in } X^* \colon \text{For all } x \text{ in } A, \, |x^*(x)| \leq 1\}$. Similarly for $X^* \supset B$, define $B^\circ = \{x \text{ in } X \colon \text{For all } x^* \text{ in } B, \, |x^*(x)| \leq 1\}$. Show if A is a balanced convex subset of X, then $A^{\circ \circ}$ is the $\sigma(X, X^*)$ -closure of A in X.
- 4. A LCS X [t] (with dual X^*) is said to be *barrelled* if each $\sigma(X, X^*)$ -closed balanced convex absorbing set is a t-neighborhood of zero. Show the following version of the Banach-Steinhaus Theorem is true for barrelled spaces: If $X^* \supset (f_n)$ is point-wise bounded on X, then (f_n) is t-equicontinuous on X (that is if D is the ball in the scalar field K, then $\cap f_n^{-1}(D)$ is a neighborhood of zero).
- 5. Prove that a Banach space is barrelled.

Functional Analysis Midterm Fall 1989

- 1. Let D: $C^1[0,1] \rightarrow C[0,1]$ be the differentiation operator (that is Df = f'). Show that the graph of D is a closed subset of Y = $C[0,1] \times C[0,1]$ (Note Y $\neq C^1[0,1] \times C[0,1]$).
- 2. Let X be a normed space. If $X^*\supset (f_n)$ has f as a $\sigma(X^*,\ X)$ -cluster point, then $||f||\leq lim$ inf $||f_n||$.
- 3. Let X be a LCS space with dual X^* . For $X \supset A$, define $A^\circ = \{x^* \text{ in } X^* \colon \text{For all } x \text{ in } A, \, |x^*(x)| \leq 1\}$. Similarly for $X^* \supset B$, define $B^\circ = \{x \text{ in } X \colon \text{For all } x^* \text{ in } B, \, |x^*(x)| \leq 1\}$. Show if A is a balanced convex subset of X, then $A^{\circ\circ}$ is the $\sigma(X, X^*)$ -closure of A in X.
- 4. A LCS X [t] (with dual X^*) is said to be *barrelled* if each $\sigma(X, X^*)$ -closed balanced convex absorbing set is a neighborhood of zero. Show the following version of the Banach-Steinhaus Theorem is true for barrelled spaces: If $X^* \supset (f_n)$ is point-wise bounded on X, then (f_n) is t-equicontinuous on X (that is if D is the ball in the scalar field K, then $\cap f_n^{-1}(D)$ is a neighborhood of zero).
- 5. Prove that a Banach space is barrelled.

Functional Analysis Assignment

- A. Prove that all continuous linear functionals F: L_p -> K are identically zero for 0 < p < 1.
- B. If X is a norm space and $x_n \to x$ weakly (in $\sigma(X, X^*)$) then there is a sequence y_m , each a convex combination of the x_n , so that y_m converges to x in norm.
- C. If X is a norm space with dual X^* and we consider X as a subspace of $X^{*\#}$, then the completion of X is the set of functionals f in $X^{*\#}$ which are $\sigma(X^*, X)$ -continuous on $B^* = \{x^* \text{ in } X^* : ||x^*|| \le 1\}$.

Functional Analysis Assignment

- A. Prove that all continuous linear functionals F: L_p -> K are identically zero for 0 < p < 1.
- B. If X is a norm space and $x_n \to x$ weakly (in $\sigma(X, X^*)$) then there is a sequence y_m , each a convex combination of the x_n , so that y_m converges to x in norm.
- C. If X is a norm space with dual X^* and we consider X as a subspace of $X^{*\#}$, then the completion of X is the set of functionals f in $X^{*\#}$ which are $\sigma(X^*, X)$ -continuous on $B^* = \{ x^* \text{ in } X^* \colon ||x^*|| \le 1 \}$.

FUNctional Analysis

MAA 5506 Functional Analysis I

Instructor: Bellenot

Fall 1989

Office: 218 Love

Office Hours:

MWF 12:45 - 1:15 & by appointment

Text: Carl L. DeVito, Functional Analysis, Academic Press 1978.

Coverage: The entire text with additions as time allows.

Grades: The easy-going 85%, 70%, 60% and 50% cut-offs.

Midterm: This test is "in class" and "closed book" worth 30% of your grade. Tentatively scheduled for Wednesday 15 November 1989.

Homework: The remaining 70% of your grade will be determined by homework problems. Some (but perhaps not all) homework problems will be graded on a ten point scale. Only the top 90% of your graded homework is used to compute your homework average.

Homework Rules:

Must be your **OWN** work!

Must be neat and in clear English.

Must be on time -- late homework is <u>not</u> accepted.

Must be on 8 1/2 by 11 paper.

Must be written in ink.

Must use only one side of each page.

Multiple pages must be stapled together.

Functional Analysis Midterm Fall 1989

- 1. Let D: $C^1[0,1] \rightarrow C[0,1]$ be the differentiation operator (that is Df = f'). Show that the graph of D is a closed subset of Y = $C[0,1] \times C[0,1]$ (Note Y \neq $C^1[0,1] \times C[0,1]$).
- 2. Let X be a normed space. If $X^* \supset (f_n)$ has f as a $\sigma(X^*, X)$ -cluster point, then $||f|| \le \lim\inf ||f_n||$.
- 3. Let X be a LCS space with dual X^* . For $X \supset A$, define $A^\circ = \{x^* \text{ in } X^* \colon \text{For all } x \text{ in } A, \, |x^*(x)| \leq 1\}$. Similarly for $X^* \supset B$, define $B^\circ = \{x \text{ in } X \colon \text{For all } x^* \text{ in } B, \, |x^*(x)| \leq 1\}$. Show if A is a balanced convex subset of X, then $A^{\circ \circ}$ is the $\sigma(X, X^*)$ -closure of A in X.
- 4. A LCS X [t] (with dual X^*) is said to be *barrelled* if each $\sigma(X, X^*)$ -closed balanced convex absorbing set is a t-neighborhood of zero. Show the following version of the Banach-Steinhaus Theorem is true for barrelled spaces: If $X^* \supset (f_n)$ is point-wise bounded on X, then (f_n) is t-equicontinuous on X (that is if D is the ball in the scalar field K, then $\cap f_n^{-1}(D)$ is a neighborhood of zero).
- 5. Prove that a Banach space is barrelled.

FUN Analysis

This Fall the good doctor Bellenot is again offering MAA 5506 (better known as Functional Analysis I) MWF 1:25-2:15 104 LOVE (ref# 26533).

The text for the fall semester will be DeVito, <u>Functional</u> <u>Analysis</u>, Academic Press 1978. DeVito's book is a short (about 150 pages) elementary introduction to functional analysis starting with normed spaces.

Topics include Compact linear operators; Open Mapping - Closed Graph Theorems; Hahn Banach Theorem; Banach Steinhaus (Principle of Uniform Boundedness) Theorem; Weak Topologies; Krien Milman Theorem; Eberlein Smulian Theorem; and Applications.

TO: CurCom FROM:Bellenot

It seems to be a good time to try to formalize a course which has been taught as a topics class a couple of times. Namely, GRAPH THEORY (MAD 5xyz?) which I taught in Spring 1987 and I will again teach in Spring 1989.

CATALOG STUFF

<u>Prereq's:</u> Graduate standing. <u>Topics:</u> Graphs and digraphs, trees and connectivity, Euler and Hamilton tours, colorings, matchings, planarity, and Ramsey's Theorem. Applications. A proof oriented class which assumes no previous exposure to graph theory, but that the students have some mathematical maturity.

Possible Text: Chartrand and Lesniak "Graphs & Digraphs" 2nd ed.

Thank you for your consideration.