Show ALL work for credit; be neat; and use only ONE side of each page of paper.

nlogn lygn no

- 1A. What big O (i.e. O(f(n))) best describes the run time of the following algorithms: i. Sorting n items by Merge Sort. ii. Searching in a sorted array of n items by Binary Search. iii. Sorting n items by Interchange Sort.
- 1B. Arrange in increasing order: $O(n^2 \log n)$, O(n!), $O(n^3)$, $O(n^2)$, $O(3^n)$, $O(n^{100})$, $O(n\sqrt{n})$, $O(n^2\sqrt{n})$, $O(2^n)$.
 - 2. Solve: $a_n 5a_{n-1} + 6a_{n-2} = 0$; $a_0 = 7$, $a_1 = 16$.
- 3. For the relation R on the set of integers defined by $xRy \iff x+3 < y$. Either prove R has the given property or give a counter-example to show it does not have that property.
 - A. Reflexive.
- B. Symmetric.
- C. Anti-symmetric.
- D. Transistive.
- 4. Prove the following relation R is an equivalence relation and describe the equivalence class of (6,4). The relation R is defined on the points of the plane by $(a,b)R(c,d) \iff b-a^2=d-c^2$.
- 5. Give the correct guesses to the form of the particular solution of the linear non-homogenuous recurrence relation which has the given forcing function. The characteristic polynomial has roots 1, 1, 2 and 5. A. $-5 \cdot 3^n$. B. $(2n-5)4^n$. C. $2 \cdot 5^n$. D. n^2-1 .
- 6. Solve: $a_n a_{n-1} = 2n 1$; $a_0 = 5$.
- 7. Solve: $a_n = 2a_{n/2} + n$; $a_1 = 1$. (Simplify your answer.)

- 8. Find $\chi(G)$ for G to the right. Prove G has this chromatic number.
- 9. Show that G to the right does not have a Hamiltonian cycle:
 - A. Without using Grinberg's Theorem.
 - B. Using Grinberg's Theorem. Hint: Show one of the degree six regions must be outside any Hamiltonian cycle.

- 10. For the transport networks above:
 - A. Which have a unique maximal flow?
 - B. Which have a unique minimal cut?
 - C. Which have the property that every non-zero integer-valued flow is maximal?
 - D. Which have the property that every cut is minimal?
- 11. Using $|E| \leq 3|V| 6$ and $2|E| = \sum_{v \in V} \deg(v)$. Show plane connected (simple) graphs have a vertex of degree 5 or less. Then show a plane connected (simple) graph with strictly fewer than 30 edges has a vertex of degree 4 or less.
- 12. There is exactly one 4-regular graph with 5 vertices, K_5 , and exactly one 4-regular graph with 6 vertices, the edge graph of the octahedron. For both of these graphs, either give a plane drawing of the graph, or carefully prove the graph is non-planar.