COMPLEX ANALYSIS
Problem Set

- 1. Let Ω be the union of all open polydiscs $\Delta(0;r)$ on which $f(z) = \sum_{\alpha} c_{\alpha} z^{\alpha} \text{ converges.}$
 - (A) Prove that z belongs to Ω if and only if f(z) converges absolutely on a neighborhood of z.
 - (B) Prove that f(z) converges uniformly on compact subsets of Ω .
 - (C) What can you say about the geometry of Ω ? Is it star-shaped? Convex? Circled?
 - (D) What can you say about the convergence of the series Daf.

71. Proof the best identity theorem you can.

III. Suppose f is analytic on $\Delta(0;1)$ and continuous of $\overline{\Delta}(0;1)$ and suppose $|z_n|=1$ is fixed. Let $g(z_1,z_2,\ldots,z_{n-1})=f(z)$. Prove that g is analytic on $\Delta(0;1)$ in $C^{(n-1)}$.

AV. (A) Prove that a pluriharmonic function on a polydisc is the real part of an analytic function.

(B) Find an analytic function whose real part is $e^{x}(x \cos y - y \sin y) + x^{3} - 3xy^{2}$.

TEXT: 10-7

V. Use the Weirstrass preparation theorem to prove the implicit function theorem for the simple case $f(z_1, z_2, ..., z_n) = 0$ near a point where f(z) = 0 but $\partial f/\partial z_n \neq 0$.

- I. Consider the function $T(z) = (z-a)/(z-\overline{a})$, where a is not real. If z is real, prove that |T(z)| = 1. If the imaginary parts of z and a are both positive, what can you say about |T(z)|? Prove it.
- II. (A) Suppose $a = re^{i\theta}$ is a non-zero complex number. Find a formal power series f(X) for which g(z) = f(z-a) is a branch of $\log z$ in the disc |z-a| < r. [Hint: Recall that you need only show that g'(z) = 1/z and that $\exp(g(a)) = a$.]
 - (B) Prove that there is an analytic branch of $\log z$ in the right half-plane, $\operatorname{Re}(z) > 0$. Prove that there is a branch of $\log z$ in the complement of any closed half-line through the origin, but that there is no branch of $\log z$ in the complement of the origin.
- III. (A) Let $\{a_n\}$, $\{\beta_n\}$ be two sequences of numbers with the following properties:
 - (1) there is a constant M > 0 such that $|\alpha_1 + \alpha_2 + \cdots + \alpha_n| \le M \text{ for all } n \ge 1,$
 - (if) the β_n are real ≥ 0 and $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n \geq \cdots$. Show that, for all $n \geq 1$,

$$|\alpha_1\beta_1 + \alpha_2\beta_2 + \cdots + \alpha_n\beta_n| \leq M\beta_1.$$

(Hint: Introduce $s_n = a_1 + \cdots + a_n$ and write

$$\alpha_1 \beta_1 + \cdots + \alpha_n \beta_n = (\beta_1 - \beta_2) s_1 + \cdots + (\beta_{n-1} - \beta_n) s_{n-1} + \beta_n s_n.$$

- (B) For which values of z does the series $\sum z^n/n$ converge? Pay particular attention to |z| = 1.
- IV. If $\{a_n\}$ is a sequence of positive numbers, prove that

$$\frac{\lim \frac{a_{n+1}}{a_n}}{a_n} \leq \frac{\lim (a_n)^{1/n}}{a_n} \leq \frac{\lim (a_n)^{1/n}}{a_n} \leq \frac{\lim \frac{a_{n+1}}{a_n}}{a_n}.$$

- V. (A) Prove that $f(z) = \cos z$ is the unique analytic function for which f''(z) = -f(z) and f(0) = 1, f(1) = 0. State and prove similar theorems for $\cos z$ and e^z .
 - (B) Use (A) to prove $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $e^{\lambda+z} = e^{\lambda}e^{z}$.

VI. If
$$f = \sum_{n=1}^{\infty} a_n x^n$$
, let $N(f) = \sum_{n=1}^{\infty} \frac{|a_n|}{1+|a_n|}$.

- (A) Prove that C[[X]] becomes a complete metric space if we define the distance between f and g as N(f-g). This topology on C[[X]] is called the *Frechet* topology.
- (B) Prove that a sequence, {f_k}, of formal power series converges to g in the Fréchet topology if and only if the n'th coefficient of f_k converges to the n'th coefficient of g, for all n. [Remark: this is just another way of saying that the Fréchet topology on C[[X]] is the same as the product topology when C[[X]] is considered as a product of countably many copies of the complex numbers.]
- (C) Prove that the polynomials are dense in the Fréchet topology on C[[X]].
- (D) Suppose that $\{S_k(X)\}$ is a summable family of power series with
- $S(X) = \sum_{k=1}^{\infty} S_k(X)$. [See Cartan, p. 11, for the definition of summable and of S(X).] Frove that $\lim_{x \to \infty} \sum_{k=1}^{m} S_k(X)$ is S(X) in the Fréchet

topology. Find a series of elements in C[[X]] which is not summable in Cartan's sense, but which converges in the Frechet topology. [Remark: for a topology in which convergence and summability are identical, see problem 1, p. 43, in Cartan.]

- VII. (A) Prove that C[[X]] is a topological algebra in the Frechet topology (i.e., prove that addition, multiplication, and scalar multiplication are all continuous). [Hint: Never use the metric to prove continuity; use VI(B) instead.]
 - (B) Let g be a power series with zero constant term and define $\phi(f) = f^{\circ}g$. Prove that ϕ is continuous. Use the continuity to prove that ϕ is an algebra homomorphism of C[[X]].
 - (C) Suppose that ψ is a continuous algebra homomorphism of C[[X]] and that $\psi(z) = g$. Prove that g has zero constant term. [Hint: $\lim_{n \to \infty} X^n = 0$], and that $\psi(f) = f \circ g$, for all f. Use these results to prove the associativity of formal power series composition (i.e., to prove proposition 4.1, p. 13, in Cartan).

DO THE FOLLOWING PROBLEMS FROM AMLFORS Complex Analysis:

Page	9	Problem	3
8.6	11	8.6	1
8.9	16	10	2,3,4,5
88.	41	6.6	1,2,3,5,6
. 11	45	9.8	1,2,3
3.8	48	8.0	3,4,6
8.3	182	90	3

REFERENCES ON SEVERAL COMPLEX VARIABLES

SURVEY

I. I. Hirschman, Jr., ed., Studies in Real and Complex Analysis, M.A.A. Studies in Mathematics, Vol. 3. Article: "Several Complex Variables", pp. 3-34.

SINGLE CHAPTER INTRODUCTIONS

- H. Cartan, Elementary Theory of Analytic Functions of One or Several Complex Variables, Addison-Wesley; Chapter IV.
- C. Caratheodory, *Theory of Functions*, 2nd English Edition, Chelsea; Volume II, pp. 113-128.
 - W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc.; Chapter 1.

RELATED ALGEBRAIC QUESTIONS

O. Zariski and P. Samuel, Commutative Algebra, 2 volumes, Van Nostrand. Particularly Volume II, pp. 129-149.

STANDARD TREATISES

- S. Bochner and W. T. Martin, Several Complex Variables, Princeton University Press.
- S. S. Abhyankar, Local Analytic Geometry, Academic Press.
- B. A. Fuks, Analytic Functions of Several Complex Variables, Translations of Mathematical Monographs, Volume 8, American Mathematical Society.
- R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc.
 - M. Herve, Several Complex Variables, Oxford University Press.
 - L. Hormander, Lectures on Functions of Several Complex Variables, Van Nostrand Co., Inc.

XIV. (A) Suppose that g(z,t) = g(x + iy,t) is a function from an open subset of $C^1 \times R = R^3$ to C^1 . Suppose that $\partial g/\partial z$ and $\partial g/\partial t$ are continuous.

Assuming the theorem about real differentiation under integral signs, prove that

$$F(z) = \int_a^b g(z,t)dt$$
 has complex derivative $F'(z) = \int_a^b \frac{\partial g}{\partial z}(z,t)dt$.

(B) If Ω is an open subset of C^1 which is star-shaped about z_0 and f(z) has a continuous derivative throughout Ω , prove that f(z)dz is exact in Ω . (Hint: For each z in Ω , let γ_z be the straight line from z_0 to z; and define:

$$F(z) = \int_{\gamma_z} f(z)dz = \int_0^1 f(z_0 + t(z - z_0))(z - z_0)dt.$$

Show by (A) that $F'(z) \equiv f(z)$ in Ω .

XV. Suppose f(z) has a continuous derivative on the annulus r < |z-a| < R. Let C, and Co be positively oriented circles centered at a and with radii between r and R. Prove that

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$

[Hint: Partition the annulus into a finite collection of star-shaped sectors.]

EVI. A differential form $\omega = P(x,y)dx + Q(x,y)dy = g(z)dz + h(z)d\overline{z}$ is said to be closed in an open set Ω if P and Q have continuous partial derivatives

and
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
.

- (A) Find conditions on g and h which are equivalent to ω being closed.
- (B) Show that f(z)dz is closed if and only if f'(z) exists and is continuous.
- (C) If ω is closed in a star-shaped region Ω , prove that it is exact. [Notice that this generalizes XIV(B).]
- (D) Find a statement of some form of Green's Theorem in the plane. Rewrite this theorem, translating the formulas involving P,Q and their x,y derivatives to formulas involving g,h and their z, z "derivatives".

DO THE FOLLOWING PROBLEMS IN AHLFORS:

Problems 2,3,4,5,6,7

P. 117f Problems 2,3 P. 120 Problems 1,2,3

