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1 hw1, Complex Arithmetic, Conjugates, Polar Form

1. (BC3.1) Reduce each of these 3 expressions to a real number

1 + 2i

3− 4i
+

2− i

5i

5i

(1− i)(2− i)(3− i)
and (1− i)4

2. (BC4.1) In each case locate z1 + z2 and z1 − z2 vectorially

z1 = 2i, z2 = 2
3 − i z1 = (−

√
3, 0), z2 = (

√
3, 0)

z1 = (−3, 1), z2 = (1, 4) z1 = x1 + iy1, z2 = x1 − iy1

3. (BC4.4) Sketch the set of points determined by each equation

|z − 1 + i| = 1 |z + i| ≤ 3 and |z + 4i| ≥ 4

4. (BC5.3,4) Verify z1 − z2 = z1 − z2, z1z2 = z1z2, z1z2z3 = z1z2z3 and z4 = z4.

5. (BC5.5) Verify ∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

(z2 6= 0)

6. (BC5.15) Show that the hyperbola x2 − y2 = 1 can be written z2 + z2 = 2

7. (BC7.1) Find the principal argument Arg z for both

z =
i

−2− 2i
and z = (

√
3− i)6

8. (BC7.2) Show |eiθ| = 1 and eiθ = e−iθ

9. (BC7.15) Use de Moivre’s formula to derive the following trig identities.

cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ

2 hw2 nth roots, Domains, Functions

1. (BC7.7) Show if <z1 > 0 and <z2 > 0 then Arg(z1z2) = Arg z1 + Arg z2

2. (BC9.1) Find the square roots of 2i and 1− i
√

3 expressed in rectangular form

3. (BC9.3) Find all of the roots in rectangle coordinates of (−1)1/3 and 81/6.
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4. (BC9.6) Find the 4 roots of p(z) = z4 + 4 = 0 and use them to factor p(z) into quadratic factors with
real coefficients.

5. (BC10.1-3) Sketch the 6 sets and determine which are domains, which are bounded, which are neither
open nor closed:

|z − 2 + i| ≤ 1 |2z + 3| > 4 =z > 1
=z = 1 0 ≤ arg z ≤ π/4 (z 6= 0) |z − 4| ≤ |z|

6. (BC10.4) Find the closure of the 4 sets:

−π < arg z < π (z 6= 0) |<z| < |z| <(
1
z
) ≤ 1

2
and <(z2) > 0

7. (BC11.1) For each function, describe the domain that is understood:

f(z) =
1

z2 + 1
f(z) = Arg(

1
z
) f(z) =

z

z + z
and f(z) =

1
1− |z|2

8. (BC11.2) Write z3 + z + 1 as u(x, y) + iv(x, y)

9. (BC11.3) Write and simplify f(z) = x2 − y2 − 2y + i(2x− 2xy) in terms of z using x = (z + z)/2 and
y = (z − z)/2i

10. (BC11.4) Write f(z) = z + 1/z (z 6= 0) in the form u(r, θ) + iv(r, θ)

3 hw3 Images, Transformations

1. (BC13.1) Find a domain in the z-plane whose image under the transformation w = z2 is the square
domain in the w-plane bounded by the lines u = 1, u = 2, v = 1, v = 2

2. (BC13.3) Sketch the region onto which the sector r ≤ 1, 0 ≤ θ ≤ π/4 is mapped by the 3 transformations
w = z2, w = z3, and w = z4

3. (BC13.4) Show that lines ay = x (a 6= 0) are mapped onto the spirals ρ = exp(aθ) under the transfor-
mation w = exp z, where w = ρ exp(iφ)

4. (BC13.7) Find the image of the semi-infinite strip x ≥ 0, 0 ≤ y ≤ π under the transformation w = exp z.
Label the corresponding portions of the boundaries.

5. (BC13.8) Graphically indicate the vector fields represented by w = iz and w = z/|z|

4 hw4 Limits

1. (BC17.3) Find the limits. n is a positive integer, P (z) and Q(z) are polynomials with Q(z0) 6= 0

lim
z→z0

1
zn

(z0 6= 0) lim
z→i

iz3 − 1
z + i

and lim
z→z0

P (z)
Q(z)

2. (BC17.5) Show that the following limit does not exist

lim
z→0

(
z

z
)2
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3. (BC17.10) Use a theorem to show:

lim
z→∞

4z2

(z − 1)2
= 4 lim

z→1

1
(z − 1)3

= ∞ and lim
z→∞

z2 + 1
z − 1

= ∞

4. (BC17.11) Suppose ad− bc 6= 0 and let:

T (z) =
az + b

cz + d

Use a theorem to show

lim
z→∞

T (z) = ∞ (if c = 0) lim
z→∞

T (z) =
a

c
(if c 6= 0) and lim

z→−d/c
T (z) = ∞ (if c 6= 0)

5 hw5 Unbounded

1. (BC17.13)( Show that a set S is unbounded if and only if every neighborhood of the point at infinity
contains at least one point of S.

6 hw6 Derivatives, Cauchy-Riemann

1. (BC19.1) Find f ′(z) when

f(z) = 3z2 − 2z + 4 f(z) = (1− 4z2)3 f(z) =
z − 1
2z + 1

(z 6= −1
2
) and f(z) =

(1 + z2)4

z2
(z 6= 0)

2. (BC19.2) Show if P (z) = a0 + a1z + a2z
2 + · · · + anzn then P ′(z) = a1 + 2a2z + · · · + nazz

n−1 and
hence

a0 = P (0), a1 =
P ′(0)

1!
, a2 =

P ′′(0)
2!

, . . . an =
P (n)(0)

n!

3. (BC19.9) Let f denote the function whose values are

f(z) =
{

z2/z when z 6= 0
0 when z = 0

Show that if z = 0, then ∆w/∆z = 1 at each nonzero point on the real and imaginary axes in the ∆z
or ∆x∆y-plane. Then show then ∆w/∆z = −1 at each nonzero point along the line y = x. Conclude
that f ′(0) does not exist.

4. (BC22.6) Let f denote the function above. Show that the Cauchy-Riemann equations are satisfied at
the origin z = (0, 0)

5. (BC22.1) Use a theorem to show that f ′(z) does not exist at any point for each function:

f(z) = z f(z) = z − z f(z) = 2x + ixy2 and f(x) = exe−iy

6. (BC22.2) Use a theorem to show that f ′(z) and its derivative f ′′(z) exist everywhere and find f ′′(z).

f(z) = iz + 2 f(z) = e−xe−iy f(z) = z3 and f(z) = cos x cosh y − i sinx sinh y
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7. Extra Credit (BC22.10) Recall z = x + iy implies x = (z + z)/2 and y = (z − z)/2i. Use the formal
chain rule to show

∂F

∂z
=

∂F

∂x

∂x

∂z
+

∂F

∂y

∂y

∂z
=

1
2
(
∂F

∂x
+ i

∂F

∂y
)

Define the operator
∂

∂z
=

1
2
(

∂

∂x
+ i

∂

∂y
)

and apply it to u(x, y)+iv(x, y) to obtain the complex form of the Cauchy-Reimann equations ∂f/∂z =
0.

7 hw7 Exp and Log

1. (BC28.1) Show that exp(2± 3πi) = −e2, exp((2 + πi)/4) = (1 + i)
√

e/2 and exp(z + πi) = − exp z.

2. (BC28.2) State why the function 2z2 − 3− zez + e−z is entire.

3. (BC28.3) Show f(z) = exp z is not analytic anywhere.

4. (BC28.7) Prove | exp(−2z)| < 1 if and only if <z > 0.

5. (BC28.8) Find all values of z such that ez = −2, or ez = 1 +
√

3i or exp(2z − 1) = 1

6. (BC28.10) Show that if ez is real, then =z = nπ (n = 0,±1,±2, . . . ). If ez is pure imaginary, what
restriction is placed on z?

7. (BC30.1) Show that Log(−ei) = 1− π
2 i and Log(1− i) = 1

2 ln 2− π
4 i.

8 hw8 Log and log

1. (BC30.2) Verify for n = 0,±1,±2, . . .:

log e = 1 + 2nπi log i = (2n +
1
2
)πi and log(−1 +

√
3i) = ln 2 + 2(n +

1
3
)πi

.

2. (BC30.3) Show that Log(1 + i)2 = 2Log(1 + i) and Log(−1 + i)2 6= 2Log(−1 + i).

3. (BC30.5) Show that the set of values of log(i1/2) is {(n + 1
4 )πi : n = 0,±1,±2, . . . } and that the same

is true of (1/2) log i.

4. (BC30.6) Given that the branch log z = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic function is
analytic at each point z in the stated domain, obtain its derivative by differentiating each side of the
identity exp(log z) = z and using the chain rule.

5. (BC30.7) Find all the roots of the equation log z = iπ/2.

6. (BC30.9) Show that Log(z − i) is analytic everywhere except on the half line y = 1 (x ≤ 0). Show

Log(z + 4)
z2 + i

is analytic everywhere except at the points ±(1− i)/
√

2 and on the portion x ≤ −4 of the real axis.
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9 hw9 Principal values, Integrals over a Real Variable

1. (BC31.1) Show if <z1 > 0 and <z2 > 0 then Log(z1z2) = Log z1 + Log z2.

2. (BC31.2) Show that for any two complex numbers z1 and z2, Log(z1z2) = Log z1 + Log z2 + 2Nπi
where N has one of the values 0,±1.

3. (BC32.1) Show that when n = 0,±1,±2 . . .

(1 + i)i = exp(−π

4
+ 2nπ) exp(

i

2
ln 2) and (−1)1/π = e(2n+1)i

4. (BC32.2) Find the principal values of each expression:

ii [
e

2
(−1−

√
3i)]3πi and (1− i)4i

5. (BC32.5) Show that the principal n-th root of a nonzero complex number z0 is the same as the principal
value of z

1/n
0 that was previously defined.

6. (BC32.8) Let c, d, z be complex numbers with z 6= 0. Prove that if all the powers involved are principal
values, then

1
zc

= z−c (zc)n = zcn (n = 1, 2, . . . ) zczd = zc+d and
zc

zd
= zc−d

7. (BC37.2) Evaluate∫ 2

1

(
1
t
− i)2 dt

∫ π/6

0

ei2t dt and
∫ ∞

0

e−zt dt (<z > 0)

.

8. (BC37.5) Let w(t) be a continuous complex-valued funtion of t defined on an interval a ≤ t ≤ b. By
considering the special case w(t) = eit on the interval 0 ≤ t ≤ 2π, show that it is not always true that
there is a number c in the interval a < t < b such that∫ b

a

w(t) dt = w(c)(b− a)

10 hw10 Contour Integrals

1. (BC38.2) Let C denote the right-hand half of the circle |z| = 2, in the counterclockwise direction and
note that two parametric representations for C are

z = z(θ) = 2eiθ (−π

2
≤ θ ≤ π

2
)

and
z = Z(y) =

√
4− y2 + iy (−2 ≤ y ≤ 2)

Verify that Z(y) = z[φ(y)], where

φ(y) = arctan
y√

4− y2
(−π

2
≤ arctan t ≤ π

2
)

Also, show that this function φ has a positive derivative, as required in the conditions following (9)
Sec 38.

6



2. (BC40.1,2,3,5,6) Evaluate ∫
C

f(z) dz

for the given f(z) and contour C

f(z) = (z + 2)/z C is z = 2eiθ (0 ≤ θ ≤ π)
f(z) = (z + 2)/z C is z = 2eiθ (π ≤ θ ≤ 2π)
f(z) = (z + 2)/z C is z = 2eiθ (0 ≤ θ ≤ 2π)
f(z) = z + 1 C is z = 1 + eiθ (π ≤ θ ≤ 2π)
f(z) = z + 1 C is z = t (0 ≤ t ≤ 2)
f(z) = π exp(πz) C is square from 0, 1, 1 + i, i
f(z) = 1 C is arbitrary curve from z1 to z2

f(z) = z−1+i C is |z| = 1 positively oriented
use branch exp[(−1 + i) log z] (|z| > 0, 0 < arg z < 2π)

3. (BC40.10) Let C0 denote the circle |z − z0| = R taken counterclockwise. Use the parametric represen-
tation z = z0 + Reiθ (−π ≤ θ ≤ π) for C0 to derive the following integration formula’s:∫

C0

dz

z − z0
= 2πi and

∫
C0

(z − z0)n−1 dz = 0 (n = ±1,±2, . . . )

11 hw11 More on Contour Integrals

1. (BC41.4) Let CR denote the upper half of the circle |z| = R (R > 2), taken in the counterclockwise
direction. Show that ∣∣∣∣∫

CR

2z2 − 1
z4 + 5z2 + 4

dz

∣∣∣∣ ≤ πR(2R2 + 1)
(R2 − 1)(R2 − 4)

2. (BC43.1) Use an antiderivative to show that, for every contour C extending from a point z1 to a point
z2, ∫

C

zn dz =
1

n + 1
(zn+1

2 − zn+1
1 ) (n = 0, 1, . . . )

3. (BC43.2) By finding an antiderivative, evaluate each of these integrals, where the path is any contour
between the indicated limits of integration.∫ i/2

i

eπz dz

∫ π+2i

0

cos(
z

2
) dz and

∫ 3

1

(z − 2)3 dz

12 hw12 Path independence

1. (BC43.3) Use a theorem to show∫
C0

(z − z0)n−1 dz = 0 (n = ±1,±2, . . . )

when C0 is any closed contour which does not pass through the point z0.

2. (BC43.4) Let C1, (resp. C2), be any contour from z = −3 to z = 3 that except for its end points, lies
above (resp. below) the x-axis. Find an antiderivative F2(z) of the branch f2(z) of

z1/2 =
√

reiθ/2 (r > 0,
π

2
< θ <

5π

2
)
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to show that the integral ∫
C2

z1/2 dz

has value 2
√

3(−1 + i). Note that the value of the integral of the function

z1/2 =
√

reiθ/2

around the closed contour C2 − C1 in that example is, therefore −4
√

3 given that∫
C1

z1/2 dz = 2
√

3(1 + i)

. (Lots of parts from example 43.4.)

13 hw13 Cauchy Goursat

1. (BC46.1) Apply the Cauchy-Goursat theorem to show that∫
C

f(z) dz = 0

when the contour C is the circle |z| = 1, in either direction and when

f(z) =
z2

z − 3
f(z) = ze−z f(z) =

1
z2 + 2z + 2

f(z) = sech z f(z) = tan z f(z) = Log(z + 2)

2. (BC46.2) Let C1 be the positively oriented circle |z| = 4 and let C2 be the positively oriented boundary
of the square whose sides lie along the lines x = ±1, y = ±1. Point out why∫

C1

f(z) dz =
∫

C2

f(z) dz

when
f(z) =

1
3z2 + 1

f(z) =
z + 2

sin(z/2)
and f(z) =

z

1− ez

3. (BC46.3) If C is the boundary of the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, described in the positive sense,
then ∫

C

(z − 2− i)n−1 = 2πi when n = 0 and 0 when n = ±1,±2, . . .

4. (BC46.4) Extra Credit ????

14 hw14 Applications of Cauchy Integral Formula

1. (BC48.1abc) Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = ±2, y = ±2. Evaluate the integrals∫

C

e−z dz

z − (πi/2)

∫
C

cos z dz

z(z2 + 8)
and

∫
C

z dz

2z + 1

8



2. (BC48.2) Find the integral of g(z) around the circle |z − i| = 2 in the positive sense when g(z) =
1/(z2 + 4) and when g(z) = 1/(z2 + 4)2.

3. (BC48.3) Let C be the circle |z| = 3 decribed in the positive sense. Show that if

g(w) =
∫

C

2z2 − z − 2
z − w

dz (|w| 6= 3)

then g(2) = 8πi. What is the value of g(w) when |w| > 3?

4. (BC48.7) Let C be the unit circle z = eiθ (−π ≤ θ ≤ π). First show that for any real constant a,∫
C

eaz

z
dz = 2πi

Then write this integral in terms of θ to derive the integration formula∫ π

0

ea cos θ cos(a sin θ) dθ = π

5. (BC48.6) Extra Credit ???? Let f denote a function that is continuous on a simple closed contour C.
Prove the function

g(z) =
1

2πi

∫
C

f(ξ) dξ

ξ − z

is analytic as each point z interior to C and and that

g′(z) =
1

2πi

∫
C

f(ξ) dξ

(ξ − z)2

at such a point.

15 hw15 Liouville

1. (BC50.1) Let f be an entire function such that |f(z)| ≤ A|z| for all z, where A is a fixed positive
number. Show that f(z) = a1z, where a1 is a complex constant. [Hint: use Cauchy’s inequality to
show f ′′(z) is zero.]

2. (BC50.1) Suppose f(z) is entire and that the harmonic function u(x, y) = <f(z) has an upper bound
u0: that is, u(x, y) ≤ u0 for all points (x, y) in the xy-plane. Show that u(x, y) must be constant
throughout the plane. [Hint: use Liouville’s theorem on exp(f(z)).]

3. (BC50.4,5) Let a function f be continuous in a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming f(z) 6= 0 anywhere in R, prove that |f(z)| has a
minimum value m in R which occurs on the boundary of R and never in the interior. [Hint: look at
1/f(z).]

Use the function f(z) = z to show that the condition f(z) 6= 0 anywhere is necessary for this conclusion.

16 hw16 Series

1. (BC52.6) Show if
∑∞

n=1 zn = S, then
∑∞

n=1 zn = S.

2. (BC52.7) Show for any complex number c Show if
∑∞

n=1 zn = S, then
∑∞

n=1 czn = cS.

3. (BC52.8) Show if
∑∞

n=1 zn = S and
∑∞

n=1 wn = T , then
∑∞

n=1(zn + wn) = S + T .

9



17 hw17 Taylor Series

1. (BC54.2) Obtain the Taylor

ez = e

∞∑
n=0

(z − 1)n

n!
(|z − 1| < ∞)

two ways. First using f (n)(1) and second by using ez = eez−1.

2. (BC54.3) Find the Maclaurin series expansion for the function

f(z) =
z

z4 + 9
=

z

9
· 1
1 + z4/9

3. (BC54.5) Derive the Maclaurin series for cos z by showing f (2n)(0) = (−1)n and f (2n+1)(0) = 0 and
by using cos z = (eiz + e−iz)/2.

4. (BC54.11) Show when z 6= 0,
ez

z2
=

1
z2

+
1
z

+
1
2!

+
z

3!
+

z2

4!
+ · · ·

sin(z2)
z4

=
1
z2
− z2

3!
+

z6

5!
− z10

7!
+ · · ·

5. (BC54.13) Show that when 0 < |z| < 4,

1
4z − z2

=
1
4z

+
∞∑

n=0

zn

4n+2

18 hw18 Laurent Series

1. (BC56.1) Find the Laurent series that represents the function f(z) = z2 sin(1/z2) in the domain
0 < z < ∞.

2. (BC56.2) Derive the Laurent series representation

ez

(z + 1)2
=

1
e

[ ∞∑
n=0

(z + 1)n

(n + 2)!
+

1
z + 1

+
1

(z + 1)2

]

3. (BC56.3) Find a representation for the function

f(z) =
1

1 + z
=

1
z
· 1
1 + (1/z)

in negative powers of z that is valid for 1 < |z| < ∞.

4. (BC56.4) Give two Laurent series expansions in powers of z for the function f(z) = 1/[z2(1− z)] and
specify the regions in which the expansions are valid. [Hint: about 0 and ∞]

5. (BC56.5) Represent the function

f(z) =
z + 1
z − 1

by both its Maclaurin series (stating where it is valid) and by a Laurent series in the domain 1 < |z| < ∞

6. (BC56.6) Show that when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞∑
n=0

(z − 1)n

2n+2
− 1

2(z − 1)

10



19 hw19 Derivative of Series, Substituting, Poles, Residues

1. (BC60.1) By differentiating the Maclaurin series representation

1
1− z

=
∞∑

n=0

zn (|z| < 1)

obtain the expressions
1

(1− z)2
=

∞∑
n=0

(n + 1)zn (|z| < 1)

and
2

(1− z)3
=

∞∑
n=0

(n + 1)(n + 2)zn (|z| < 1)

2. (BC60.2) By substituting 1/(1− z) for z in the expansion

1
(1− z)2

=
∞∑

n=0

(n + 1)zn (|z| < 1)

found above, derive the Laurent series representation

1
z2

=
∞∑

n=2

(−1)n(n− 1)
(z − 1)n

(1 < |z − 1| < ∞)

3. (BC60.3) Find the Taylor series for the function
1
z

=
1

2 + (z − 2)
=

1
2
· 1
1 + (z − 2)/2

about the point z0 = 2. Then by differentiating that series term by term, show that

1
z2

=
1
4

∞∑
n=0

(−1)n(n + 1)(
z − 2

2
)n (|z − 2| < 2)

4. (BC61.1) Use multiplication of series to show that

ez

z(z2 + 1)
=

1
z

+ 1− 1
2
z − 5

6
z2 + · · · (0 < |z| < 1)

5. (BC61.3) Use division to obtain the Laurent series representation
1

ez − 1
=

1
z
− 1

2
+

1
12

z − 1
720

z3 + · · · (0 < |z| < 2π)

6. (BC64.1) Find the residue at z = 0 of the functions

1
z + z2

z cos(
1
z
)

z − sin z

z

cot z

z4
and

sinh z

z4(1− z2)

7. (BC64.2) Use Cauchy’s residue theorem to evaluate the integral of each of these functions around the
circle |z| = 3 in the positive sense:

exp(−z)
z2

exp(−z)
(z − 1)2

z2 exp(
1
z
) and

z + 1
z2 − 2z

8. (BC64.3) Use a theorem involving a single residue to evaluate the integral of each of these functions
around the circle |z| = 2 in the positive sense.

z5

1− z3

1
1 + z2

and
1
z

11



20 hw20 Singular points

1. (BC65.1) In each case, write the principal part of the function at its isolated singular point and
determine whether that point is a pole, a removable singular point or an essential singular pont.

z exp(
1
z
)

z2

1 + z

sin z

z

cos z

z
and

1
(2− z)3

2. (BC65.2) Show that the singular point of each of the following functions is a pole. Determine the order
m of the pole and the corresponding residue B.

1− cosh z

z3

1− exp(2z)
z4

and
exp(2z)
(z − 1)2

3. (BC65.3) Suppose f is analytic at z0 and write g(z) = f(z)/(z − z0). Show that:

(a) If f(z0) 6= 0, then z0 is a simple pole of g, with residue f(z0).
(b) Iff(z0) = 0, then z0 is a removable singular point of g.

21 hw21 Residues, Poles, Order of a Pole

1. (BC65.4) Write the function

f(z) =
8a3z2

(z2 + a2)3
(a > 0)

as

f(z) =
φ(z)

(z − ai)3
where φ(z) =

8a3z2

(z + ai)3

Point out why φ(z) has a Taylor series representation about z = ai, and then use it to show that the
principal part of f at that point is

φ′′(ai)/2
z − ai

+
φ′(ai)

(z − ai)2
+

φ(ai)
(z − ai)3

= − i/2
z − ai

− a/2
(z − ai)2

− a2i

(z − ai)3

2. (BC67.1) In each case, show that any singular point of the function is a pole. Determine the order m
of the pole and find the corresponding residue B

z2 + 2
z − 1

(
z

2z + 1
)3 and

exp z

z2 + π2

3. (BC67.2) Show that

Res
z=−1

z1/4

z + 1
=

1 + i√
2

(|z| > 0, 0 < arg z < 2π)

Res
z=i

Log z

(z2 + 1)2
=

π + 2i

8

Res
z=i

z1/2

(z2 + 1)2
=

1− i

8
√

2
(|z| > 0, 0 < arg z < 2π)

4. (BC67.3) Find the value of the integral ∫
C

3z3 + 2
(z − 1)(z2 + 9)

dz

taken counterclockwise around both circles |z − 2| = 2 and |z| = 4

12



22 hw22 Computing Integrals

1. (BC67.4) Find the value of the integral ∫
C

dz

z3(z + 4)

taken counterclockwise around both circles |z| = 2 and |z + 2| = 3

2. (BC69.1) Show that the point z = 0 is a simple pole of the function f(z) = csc z = 1/ sin z by a
theorem and by computing the Laurent series.

3. (BC69.3a) Show that

Res
z=zn

(z sec z) = (−1)n+1zn, where zn =
π

2
+ nπ (n = 0,±1,±2, . . .

4. (BC69.4a) Let C denote the positively oriented circle |z| = 2 and evaluate the integral∫
C

tan z dz

5. (BC69.5) Let CN denote the positive oriented boundary of the square whose edges lie along the lines

x = ±(N +
1
2
)π and y = ±(N +

1
2
)π

where N is a positive integer. Show that∫
CN

dz

z2 sin z
= 2πi

[
1
6

+ 2
N∑

n=1

(−1)n

n2π2

]

then using the fact that the value of this integral tends to zero as N tends to infinity, point out how
it follows that

∞∑
n=1

(−1)n

n2
=

π2

12

23 hw23 Poles and Zeros

1. (BC69.9) Let p and q denote functions that are analytic at a point z0 where p(z0) 6= 0 and q(z0) = 0.
Show that if the quotient p(z)/q(z) has a pole of order m at z0, then z0 is a zero of order m of q.

24 hw24 Cool Integrals

1. (BC72.1,2,4) Use residues to evaluate the following integrals∫ ∞

0

dx

x2 + 1

∫ ∞

0

dx

(x2 + 1)2
and

∫ ∞

0

x2 dx

(x2 + 1)(x2 + 4)

2. (BC74.1,2) Use residues to evaluate the following integrals∫ ∞

−∞

cos x dx

(x2 + a2)(x2 + b2)
(a > b > 0) and

∫ ∞

0

cos ax dx

x2 + 1
(a > 0)

13
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