MHF 5206 Foundations Quiz 4 6 Jun 2008 Show ALL work for credit; Give exact answers when possible. Use a separate page for each of the two problems. Use one side of each page.

1. Let U be a well ordered set and define $f: U \to \mathbb{N}$ and $g: U \to U$ by

$$f(u) = \begin{cases} S(f(v)) & u = S(v) \\ 0 & u = 0 \lor \operatorname{Limit}_U(u) \end{cases} \qquad g(u) = \begin{cases} g(v) & u = S(v) \\ u & u = 0 \lor \operatorname{Limit}_U(u) \end{cases}$$

[The function f is a sort of mod p, for $p = \omega$ and g is kind of, sort of, a floor or greatest integer analog.]

- (a) Show $\forall u \in U, u = S^{f(u)}(g(u))$ [Remember $S^0(x) = x$ and $S^{n+1}(x) = S(S^n(x))$]
- (b) Show $\pi(u) = (f(u), g(u))$ is an order isomorphism which shows

$$U \leq_o \mathbb{N} \cdot_o \{ u \in U \mid u = 0 \lor \operatorname{Limit}_U(u) \}$$

2. True or False and give a short reason why or why not.

- (a) If U and V are well ordered and v is a limit point in V, then (1, v) is a limit point in $U +_o V$.
- (b) $\mathbb{N} +_o \mathbb{N} =_o \mathbb{N}$
- (c) There is a well-ordered set that is order isomorphic to a proper initial sequent of itself.
- (d) Every infinite well-ordered set is order isomorphic to a proper subset of itself.
- (e) The Axiom of Choice says given sets A and B and a relation $P \subseteq A \times B$

$$(\exists x \in A(\forall y \in B \ P(x, y))) \Rightarrow \exists f : A \to B \text{ s.t. } \forall x \in A \ P(x, f(x))$$

- (f) A choice function satisfies $c(A) \in A$ for each set A in its domain.
- (g) In an inductive poset P, chains $\mathscr{C} \subseteq P$ have $\sup \mathscr{C} \in P$
- (h) Every infinite well ordered set has a limit point.
- (i) For non-empty sets A and B, $(A \rightarrow B)$ is an inductive poset.
- (j) If $x \in U$ and U is well ordered, then $x \in seq_U(x)$