Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Nothing written on this page will be graded;

1. Let $f(x)=\sin (\pi x)-5 \sin (3 \pi x)$, and $g(x)=\cos (\pi x)-5 \cos (3 \pi x)$. Match the PDE problem with its solution. Note there are twice as many solutions (grouped in pairs) than equations. Each pair will be matched once. (We have $c^{2}=L=a=b=1$.)

A. $u_{x x}=u_{t t}$	B. $u_{x x}=u_{t t}$	C. $u_{x x}=u_{t}$	D. $u_{x x}=u_{t}$	E. $u_{x x}+u_{t t}=0$
$u(0, t)=0$	$u(0, t)=0$	$u(0, t)=0$	$u_{x}(0, t)=0$	$u(0, t)=0$
$u(1, t)=0$	$u(1, t)=0$	$u(1, t)=0$	$u_{x}(1, t)=0$	$u(1, t)=0$
$u(x, 0)=f(x)$	$u(x, 0)=0$	$u(x, 0)=f(x)$	$u(x, 0)=g(x)$	$u(x, 0)=0$
$u_{t}(x, 0)=0$	$u_{t}(x, 0)=f(x)$			$u(x, 1)=f(x)$

1a	$u(x, t)=\cos (\pi x) \exp \left(-\pi^{2} t\right)-5 \cos (3 \pi x) \exp \left(-9 \pi^{2} t\right)$
1b	$u(x, t)=\cos (\pi x) \exp \left(-\pi^{2} t\right)-5 \cos (3 \pi x) \exp \left(-3 \pi^{2} t\right)$
2a	$u(x, t)=\sin (\pi x) \exp \left(-\pi^{2} t\right)-5 \sin (3 \pi x) \exp \left(-3 \pi^{2} t\right)$
2b	$u(x, t)=\sin (\pi x) \exp \left(-\pi^{2} t\right)-5 \sin (3 \pi x) \exp \left(-9 \pi^{2} t\right)$
3a	$u(x, t)=\sin (\pi x) \sinh (\pi t) / \sinh (\pi)-5 \sin (3 \pi x) \sinh (3 \pi t) / \sinh (3 \pi)$
3b	$u(x, t)=\sin (\pi x) \sinh (\pi t) / \sinh (\pi)-5 \sin (3 \pi x) \sinh (3 \pi t) / \sinh (\pi)$
4a	$u(x, t)=\sin (\pi x) \sin (\pi t) / \pi-5 \sin (3 \pi x) \sin (3 \pi t) / \pi$
4b	$u(x, t)=\sin (\pi x) \sin (\pi t) / \pi-5 \sin (3 \pi x) \sin (3 \pi t) / 3 \pi$
5a	$u(x, t)=\sin (\pi x) \cos (\pi t)-5 \sin (3 \pi x) \cos (3 \pi t) / 3$
5b	$u(x, t)=\sin (\pi x) \cos (\pi t)-5 \sin (3 \pi x) \cos (3 \pi t)$

2. Show $u(x, y)=f(x-y)$ is a solution to the PDE $u_{x}+u_{y}=0$. If $u(x, 0)$ looks like the graph below, graph $u(x, 2)$.

3. Find the steady state solution of the non-homogeneous problem $u_{t}=u_{x x}+H$, when the constant $H=2$, with boundary conditions $u(0, t)=0$ and $u(1, t)=5 \neq 0$ (note the non-homogeneous end-point).
4. Find the Fourier integral of $f(x)=\left\{\begin{aligned}-5 x & |x|<2 \\ 0 & \text { otherwise }\end{aligned}\right.$ (Don't forget the Even/Odd Rule.)
5. True or False and a brief reason why or why not. The following trig identities might be useful

$$
\begin{aligned}
\sin A \sin B & =[\cos (A-B)-\cos (A+B)] / 2 \\
\sin A \cos B & =[\sin (A+B)+\sin (A-B)] / 2 \\
\cos A \cos B & =[\cos (A+B)+\cos (A-B)] / 2
\end{aligned}
$$

(a) Since $2 \sin x \sin n x=\cos [(1-n) x]-\cos [(1+n) x]$ then $\int_{0}^{\pi} 2 \sin x \sin n x d x=0$ for $n=1,2,3, \ldots$
(b) D'Alembert's solution of the wave equation problem in 1 A (above) is $u(x, t)=f(x-t)+f(x+t)$
(c) The standing wave $\sin n \pi x / L$ oscillates at n times the speed of the standing wave $\sin \pi x / L$
(d) $u_{x x}+u_{x y}+u_{y y}=0$ is parabolic.
(e) $u_{x x}=y u_{y y}$ is hyperbolic for $y>0$ and elliptic for $y<0$
(f) The characteristics of $u_{x x}-5 u_{x y}-6 u_{y y}=0$ are $\Phi=y+x$ and $\Psi=y-6 x$
(g) The characteristics of $u_{x x}+25 u_{y y}=0$ are $\Phi=y+5 i x$ and $\Psi=y-5 i x$
(h) All solutions of the form $u(x, y)=X(x) Y(y)$ of $u_{x}+u_{y}=0$ are $u=C \exp (k(x-y))$
(i) If $X^{\prime \prime}(x)=-\omega^{2} X(x)$ has the boundary conditions $X(0)=0$ and $X^{\prime}(L)=0$ then $X(x)=C \sin \omega x$ where $\omega L=n \pi / 2$ for odd $n=1,3,5, \ldots$
(j) The PDE $u_{x x}+u_{x} u_{y}+u_{y y}=0$ is linear.

