Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Nothing written on this page will be graded;

1. Show $u=e^{-t} \sin 5 x$ is a solution to

$$
\frac{\partial^{2} u}{\partial x^{2}}=25 \frac{\partial u}{\partial t}
$$

2. Find the general solution to $y^{\prime \prime}-2 y^{\prime}+5 y=0$
3. Compute and simplify the integral below assuming n is a positive integer. Your answer should be trig-function-free. Hint: At the end, consider n even and n odd cases separately.

$$
\int_{0}^{\pi} x \cos n x d x
$$

4. A function $u(x, y)$ is also a function of the polar coordinate r and θ via $u(r \cos \theta, r \sin \theta)$. Use the chain rule to show

$$
\frac{\partial u}{\partial r} \cos \theta-\frac{1}{r} \frac{\partial u}{\partial \theta} \sin \theta=\frac{\partial u}{\partial x}
$$

Hint

5. True or False and a brief reason why or why not Here $u(t)$ is the unit step function which is 0 for $t<0$ and 1 otherwise.
(a) The function graphed below left is $u(t-1)-u(t-3)$

(b) The function graphed above right is $(t-1) u(t-1)-(t-1) u(t-2)$
(c) The trigonometric functions $\sin x, \cos x$, and $\tan x$ all have fundamental period 2π.
(d) The following are trig identities $\sin 2 x=2 \cos x \sin x$ and $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
(e) The ODE $y^{\prime \prime}+\sqrt{x} y^{\prime}-3 x^{2} e^{x} y=3 x^{x}$ is linear.
(f) The ODE $\left(y^{\prime}\right)^{2}+y^{\prime \prime \prime}+y^{2}=\sin t \cos t$ is second order.
(g) $e^{2 x}=\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}$
(h) The radius of converence of $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$ is $\frac{1}{2}$
(i) The gradient of a function $f(x, y, z), \operatorname{grad} f=\nabla f$ is a scalar.
(j) The divergerge of a function $f(x, y, z), \operatorname{div} f$ is a scalar.

