
Fourier Transform Examples (Corrected)

Steven Bellenot

July 26, 2007

1 Formula Sheet

F [f(x)] = f̂(w) or simply F [f ] = f̂(1)

F−1[f̂(w)] = f(x) or simply F−1[f̂ ] = f(2)

F [f(x)](w) = f̂(w) =
1√
2π

∫ ∞
−∞

f(x)e−iwx dx(3)

F−1[f̂(w)](x) =
1√
2π

∫ ∞
−∞

f̂(w)eiwx dw(4)

F [u(x, t)](w, t) = û(w, t) =
1√
2π

∫ ∞
−∞

u(x, t)e−iwx dx(5)

F−1[û(w, t)](x, t) =
1√
2π

∫ ∞
−∞

û(w, t)eiwx dw(6)

F [af(x) + bg(x)](w) = af̂(w) + bĝ(w)(7)

F [f ′(x)](w) = iwf̂(w)(8)

F [f ′′(x)](w) = −w2f̂(w)(9)

F [
∂

∂x
u(x, t)](w, t) = iwû(w, t)(10)

F [
∂2

∂x2
u(x, t)](w, t) = −w2û(w, t)(11)

F [
∂

∂t
u(x, t)](w, t) =

∂

∂t
û(w, t)(12)

F [
∂2

∂t2
u(x, t)](w, t) =

∂2

∂t2
û(w, t)(13)

[f ∗ g](x) =
∫ ∞
−∞

f(w)g(x− w) dw = [g ∗ f ](x) =
∫ ∞
−∞

f(x− w)g(w) dw(14)

F [f ∗ g] =
√

2πf̂ ĝ(15)

f(x− a) = F−1[e−iwaf̂(w)](16)

F [exp (−ax2)] =
1√
2a

exp(
−w2

4a
)(17)

sinwa =
eiwa − e−iwa

2i
(18)

coswa =
eiwa + e−iwa

2
(19)

1



2 Formula Justifications

Equations (1), (3) and (5) readly say the same thing, (3) being the usual definition. (Warning, not all
textbooks define the these transforms the same way.) Equations (2), (4) and (6) are the respective inverse
transforms.

What kind of functions is the Fourier transform defined for? Clearly if f(x) is real, continuous and zero
outside an interval of the form [−M,M ], then f̂ is defined as the improper integral

∫∞
−∞ reduces to the

proper integral
∫M
−M . If f(x) decays fast enough as x→∞ and x→ −∞, then f̂(w) is also defined. However

there are much larger collections of objects for which the transform can be defined. For example, if δ(x)
is the Dirac delta function, then δ̂(w) = 1/

√
2π the constant function. Also one can see that the inverse

transform of δ(w) is the constant function 1/
√

2π.
Equation (7) follows because the integral is linear, the inverse transform is also linear.
Equation (8) follows from integrating by parts, using u = e−iwx and dv = f ′(x) dx and the fact that f(x)

decays as x→∞ and x→ −∞.∫ ∞
−∞

f ′(x)e−iwx dx = f(x)e−iwx
∣∣∞
x=−∞ −

∫ ∞
−∞
−f(x)iweiwx dx = (0− 0) + iwf̂(w)

Equation (9) is just (8) applied twice. And (10) and (11) are just restatements with more variables.
Equation (12) requires going back to the definition of the limit.

F

[
u(x, t+ ∆t)− u(x, t)

∆t

]
=
∫ ∞
−∞

u(x, t+ ∆t)− u(x, t)
∆t

e−iwx dx

=
û(w, t+ ∆t)− û(w, t)

∆t
→ ∂

∂t
û(w, t)

One now takes limits of both sides. We need to know that the fourier transform is continuous with this kind
of limit, which is true, but beyond our scope to show. Equation (13) is (12) done twice.

Equation (14) says f ∗ g = g ∗ f and this is done by substitution; use u = x− w; du = −dw; w = x− u;
u =∞ when w = −∞ and u = −∞ when w =∞ to obtain∫ ∞

w=−∞
f(w)g(x− w) dw =

∫ −∞
u=∞

f(x− u)g(u) (−du) =
∫ ∞
u=−∞

f(x− u)g(u) du

which used the negative sign to change the order of integration.
Equation (15) uses∫ ∞

x=−∞
(f ∗ g)e−iwx dx =

∫ ∞
x=−∞

∫ ∞
s=−∞

f(s)g(x− s) dse−iwx dx

=
∫ ∞
x=−∞

∫ ∞
s=−∞

f(s)g(x− s)e−iwx ds dx

=
∫ ∞
s=−∞

∫ ∞
x=−∞

f(s)g(x− s)e−iwx dx ds

Note that we have interchanged the order of integration, now we let u = x− s, x = u+ s, du = ds, u = ±∞
when x = ±∞

=
∫ ∞
s=−∞

∫ ∞
u=−∞

f(s)g(u)e−iw(u+s) du ds

=
∫ ∞
s=−∞

f(s)e−iws ds
∫ ∞
u=−∞

g(u)e−iwu du

since the u terms are constant as the integral with respect to ds is concerned. So the inital expression is√
2πF [f ∗ g] and the end epression is

√
2πf̂
√

2πĝ which is where the
√

2π factor comes from.



To show equation (16) we compute F [f(x− a)] and substitute u = x− a; x = u+ a; dx = du :∫ ∞
x=−∞

f(x− a)e−iwx dx =
∫ ∞
u=−∞

f(u)e−iw(u+a) du = e−iwa
∫ ∞
u=−∞

f(u)e−iwu du = e−iwaf̂(w)

For the bell shaped curves, equation (17) is done in earlier editions of the textbook. We repeat the
calculation for reference only

F [exp(−ax2)] =
1√
2π

∫ ∞
−∞

exp(−ax2 − iwx) dx

=
1√
2π

∫ ∞
−∞

exp

(
−
(√

ax+
iw

2
√
a

)2

+
(
iw

2
√
a

)2
)
dx

=
1√
2π

exp
(
−w

2

4a

)∫ ∞
−∞

exp

(
−
(√

ax+
iw

2
√
a

)2
)
dx

We claim that the integral above has value I =
√

π
a . First we do the substitution

v =
√
ax+

iw

2
√
a

so that dv =
√
adx and hence

I =
∫ ∞
−∞

exp(−v2)
dv√
a

The result follows since ∫ ∞
−∞

exp(−v2) dv =
√
π

comes from Calculus 3.
Finally (18) and (19) are from Euler’s eiθ = cos θ + i sin θ.

3 Solution Examples

• Solve 2ux + 3ut = 0; u(x, 0) = f(x) using Fourier Transforms.

Take the Fourier Transform of both equations. The initial condition gives

û(w, 0) = f̂(w)

and the PDE gives

2(iwû(w, t)) + 3
∂

∂t
û(w, t) = 0

Which is basically an ODE in t, we can write it as

∂

∂t
û(w, t) = −2

3
iwû(w, t)

and which has the solution
û(w, t) = A(w)e−2iwt/3

and the initial condition above implies A(w) = f̂(w)

û(w, t) = f̂(w)e−2iwt/3

We are now ready to inverse Fourier Transform and equation (16) above, with a = 2t/3, says that

u(x, t) = f(x− 2t/3)



• Solve 2tux + 3ut = 0; u(x, 0) = f(x) using Fourier Transforms.

Take the Fourier Transform of both equations. The initial condition gives

û(w, 0) = f̂(w)

and the PDE gives

2t(iwû(w, t)) + 3
∂

∂t
û(w, t) = 0

Which is basically an ODE in t, we can write it as

∂

∂t
û(w, t) = −2

3
iwtû(w, t)

and which has the solution (separate variables)

û(w, t) = A(w)e−iwt
2/3

and the initial condition above implies A(w) = f̂(w)

û(w, t) = f̂(w)e−iwt
2/3

We are now ready to inverse Fourier Transform and equation (16) above, with a = t2/3, says that

u(x, t) = f(x− t2/3)

• Solve the heat equation c2uxx = ut; u(x, 0) = f(x)

Take the Fourier Transform of both equations. The initial condition gives

û(w, 0) = f̂(w)

and the PDE gives

c2(−w2û(w, t)) =
∂

∂t
û(w, t)

Which is basically an ODE in t, we can write it as

∂

∂t
û(w, t) = −c2w2û(w, t)

Which has the solution
û(w, t) = A(w)e−c

2w2t

and the initial condition above implies A(w) = f̂(w)

û(w, t) = f̂(w)e−c
2w2t

We are now ready to inverse Fourier Transform: First use (17) with

1
4a

= c2t or a =
1

4c2t

to note that √
2

2c
√
t
F

[
exp(− x2

4c2t

]
= e−c

2w2t

So that by the convolution equation (15)

u(x, t) = f(x) ∗
(

1
2c
√
πt

)
exp

(
− x2

4c2t

)



• Solve the wave equation c2uxx = utt; u(x, 0) = f(x) and ut(x, 0) = g(x)

Take the Fourier Transform of both equations. The initial condition gives

û(w, 0) = f̂(w)

ût(w, 0) =
∂

∂t
û(x, t)

∣∣∣∣
t=0

= ĝ(w)

and the PDE gives

c2(−w2û(w, t)) =
∂2

∂t2
û(w, t)

Which is basically an ODE in t, we can write it as

∂2

∂t2
û(w, t) + c2w2û(w, t) = 0

Which has the solution, and derivative

û(w, t) = A(w) cos cwt+B(w) sin cwt

∂

∂t
û(w, t) = −cwA(w) sin cwt+ cwB(w) cos cwt

so the first initial condition gives A(w) = f̂(w) and the second gives cwB(w) = ĝ(w) make the solution

û(w, t) = f̂(w) cos cwt+
ĝ(w)
w

sin cwt
c

Lets first look at

f̂(w) cos cwt = f̂(w)
(
eiwct + e−iwct

2

)
=

1
2

(
f̂(w)eicwt + f̂(w)e−icwt

)
Applying equation (16) with a = −ct and with a = ct yields

F−1[f̂(w) cos cwt] =
1
2

(f(x+ ct) + f(x− ct))

The second piece
ĝ(w)
w

sin cwt
c

=
ĝ(w)
iw

sin cwt
−ic

and now the first factor looks like an integral, as a derivative with respect to x would cancel the iw in
bottom. Define

h(x) =
∫ x

s=0

g(s) ds

By fundamental theorem of calculus
h′(x) = g(x)

and by (8)
ĝ(w) = iwĥ(w)

So
ĝ(w)
w

sin cwt
c

= ĥ(w)
(
eicwt − e−icwt

2i

)
1
−ic

=
1
2c

(
ĥ(w)eicwt − ĥ(w)e−icwt

)



Applying equation (16) with a = −ct and with a = ct yields

F−1[
1
wc
ĝ(w) sin cwt] =

1
2c

(h(x+ ct)− h(x− ct))

=
1
2c

(∫ x+ct

0

g(s) ds−
∫ x+ct

0

g(s) ds
)

=
1
2c

∫ x+ct

x−ct
g(s) ds

Putting both pieces together we get D’Alembert’s solution

u(x, t) =
1
2

(f(x− ct) + f(x+ ct)) +
1
2c

∫ x+ct

x−ct
g(s) ds

(The careful reader will notice that there might be a problem finding the fourier transform of h(x) due
to likelyhood of limx→±∞ h(x) 6= 0. But that is a story for another day.)

• Solve uxx + uyy = 0 on infinite strip (−∞,∞) × [0, 1] with boundary conditions u(x, 0) = 0 and
u(x, 1) = f(x).

Take the Fourier Transform of all equations. The boundary conditons yield

û(w, 0) = 0

û(w, 1) = f̂(w)

and the PDE gives

−w2û(w, y) +
∂2

∂y2
û(w, y) = 0

Which is basically an ODE in y, with a solution of the form

û(w, y) = A(w) coshwy +B(w) sinhwy

The y = 0 condition implies A(w) = 0 and the y = 1 implies

B(w) =
f̂(w)

sinhw

û(w, y) = f̂(w)
sinhwy
sinhw

We get the solution

u(x, y) =
1√
2π

∫ ∞
w=−∞

f̂(w)
sinhwy
sinhw

eiwx dw

• Solve ux+ut = 0; u(x, 0) = f(x) (Homework Problem) Take the Fourier Transform of both equations.
The initial condition gives

û(w, 0) = f̂(w)

and the PDE gives

iwû(w, t) +
∂

∂t
û(w, t) = 0

Which is basically an ODE in t, we can write it as

∂

∂t
û(w, t) = −iwû(w, t)

and which has the solution
û(w, t) = A(w)e−iwt

and the initial condition above implies A(w) = f̂(w)

û(w, t) = f̂(w)e−iwt

We are now ready to inverse Fourier Transform and equation (16) above, with a = t, says that

u(x, t) = f(x− t)



• Solve ux + ut + u = 0; u(x, 0) = f(x) (Homework Problem)

Take the Fourier Transform of both equations. The initial condition gives

û(w, 0) = f̂(w)

and the PDE gives

iwû(w, t)) +
∂

∂t
û(w, t) + û(w, t) = 0

Which is basically an ODE in t, we can write it as

∂

∂t
û(w, t) = (−iw − 1)û(w, t)

and which has the solution
û(w, t) = A(w)e(−iw−1)t

and the initial condition above implies A(w) = f̂(w)

û(w, t) = e−tf̂(w)e−iwt

We are now ready to inverse Fourier Transform and equation (16) above, with a = t, says that

u(x, t) = e−tf(x− t)


