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1 Separation of Variables

Find the solution u(x, y) to the following equations by separating variables.

1. ux + uy = 0

2. ux − uy = 0

answer: u = cek(x+y)

3. y2ux − x2uy = 0

4. ux + uy = (x+ y)u

answer: u = c exp
[

1
2 (x2 + y2) + k(x− y)

]
5. uxx + uyy = 0

6. uxy − u = 0

answer: u = c exp(kx+ y/k)

7. uxx − uyy = 0

8. xuxy − 2yu = 0

answer: u = xke−y
2/k

Solution to #4 above. Let u = X(x)Y (y), plugging to the equation gives

X ′(x)Y (y) +X(x)Y ′(y) = (x+ y)X(x)Y (y)

X ′(x)
X(x)

+
Y ′(y)
Y (y)

= (x+ y)

X ′(x)
X(x)

− x = k = y − Y ′(y)
Y (y)

for some constant k. We have two ODE to solve

X ′(x)− (x+ k)X(x) = 0 and Y ′(y)− (y − k)Y (y) = 0

The first has an integrating factor of exp(−x2/2−kx) and solution X(x) = C exp(x2/2+kx). The second
has an integrating factor of exp(−y2/2 + ky) and solution Y (y) = C exp(y2/2− ky). Multiplying the ODE
solutions gives the answer above.

Solution to #7. u = X(x)(Y (y)

X ′′(x)Y (y)−X(x)Y ′′(y) = 0

X ′′(x)
X(x)

= k =
Y ′′(y)
Y (y)
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X ′′(x)− kX(x) = 0 Y ′′(y)− kY (y) = 0

Supposing k 6= 0, we get X(x) = C1e
ωx + C2e

−ωx and Y (y) = C1e
ωy + C2e

−ωy, where ω is the (possibly
complex) number so that ω2 = k. Our answer has 4 terms

u = A exp(ω(x+ y)) +B exp(ω(x− y)) + C exp(ω(y − x)) +D exp(−ω(x+ y))

If k < 0 and changing ω so that k = −ω2 we have the alternate solution X(x) = C1 cosωx+ C2 sinωy and
Y (y) = C1 cosωy + C2 sinωy Our answer has four different terms

u = A cosωx cosωy +B cosωx sinωy + C sinωx cosωy +D sinωx sinωy

Finally if k = 0, X(x) = C1x+ C2 and Y (y) = C1y + C2 giving the solution

u = Axy +Bx+ Cy +D

2 Characteristic examples, Normal form table

If the PDE is auxx + buxy + cuyy = 0 and the roots of ax2 − bx+ c are r and s. (Note the sign change from
b in the PDE to −b in the polynomial.) The constant coefficient case looks like:

Type Hyperbolic Parabolic Elliptic
Roots r and s real and r 6= s real and r = s complex r = a+ bi, s = a− bi
Characteristics Φ = y − rx, Ψ = y − sx Φ = Ψ = y − rx Φ = y − rx , Φ = y − sx
New variables ξ = y − rx, η = y − sx ξ = x, η = y − rx ξ = y − ax, η = bx
Solution u = f(y − rx) + g(y − sx) u = f(y − rx) + xg(y − rx) u = f(y − rx) + g(y − sx)
Normal form uξη = 0 or uξξ − uηη = 0 uηη = 0 uξξ + uηη = 0

Some motivation for why this works.
Of course the most interesting question is why the sign change? It is not hard to check that ax2 + bx+ c

and ax2 − bx+ c have the roots that are negative of each other. So if r and s are roots of ax2 − bx+ c then
−r and −s are roots of ax2 + bx + c. Eventually this means ax2 + bx + c = a(x + r)(x + s). Symbolically
we can write

a

(
∂

∂x
+ r

∂

∂y

)(
∂

∂x
+ s

∂

∂y

)
u = auxx + buxy + cuyy = 0

If you look at ux + ruy = 0 , this says that the directional derivation of u in the 〈1, r〉 direction is
always zero. So u is constant along lines perpendicular to 〈−r, 1〉, that is u is constant on lines of the form
y − rx = C for some constant C. This change of sign reflects the change from the direction to the normal
direction.

3 Characteristic examples, Normal form problems

• We do the wave equation first c2uxx − uyy = 0. Step 1: A = c2, B = 0, C = −1 and thus AC −B2 =
−c2 < 0 so the equation is hyperbolic.

Step 2: is the find the characteristics, we need to solve

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0

c2
(
dy

dx

)2

− 1 = 0

dy

dx
= ±1/c

Which gives y = x/c+ C and y = −x/c+ C so Φ = x− cy and Ψ = x+ cy are the characterics.



Step 3: We solve the equation as u = f(x− cy) + g(x+ cy) Check that it solves the equation.

Step 4: Transforms ξ = x − cy and η = x + cy gives ux = uξ + uη, uy = −cuξ + cuη, uxx =
uξξ + uξη + uηξ + uηη, uyy = c2uξξ − c2uξη − c2uηξ + c2uηη, So

c2uxx − uyy = 4c2uξη

and the equation has the canonical form uξη = 0

• Problem #13 in §12.4 gives the PDE uxx+9uyy and asks us to find the type, transform to normal form
and solve. Step 1 is to classify the equation, clearly A = 1, B = 0 and C = 9 so that AC −B2 = 9 > 0
and the equation is elliptic.

Step 2 is to find the characterics, we need to solve

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0

(
dy

dx

)2

+ 9 = 0

dy

dx
= ±3i

Which gives y = 3ix and y = −3ix, we write these as Φ = y − 3ix and Ψ = y + 3ix as characteristics.

Step 3 from the characteristics, we can solve the equation as

u(x, y) = f(y − 3ix) + g(y + 3ix)

Note assuming complex variables behave

uxx = (−3i)2f ′′(y − 3ix) + (3i)2g′′(y + 3ix) = −9f ′′ − 9g′′

uyy = f ′′(y − 3ix) + g′′(y + 3ix) = f ′′ + g′′

and clearly uxx + 9uyy = 0.

Step 4, we use the transformations ξ = (Φ + Ψ)/2 = y and η = (Φ − Ψ)/2i = 3x to change the PDE
to the canonical form uξξ + uηη = 0. Eventually uξξ = uyy and 9uηη = uxx.

The change rule was use in step 4.

ux = uξξx + uηηx = 0uξ + 3uη = 3uη

uxx = 3(uηξξx + uηηηx) = 9uηη

• Problem #15 uxx + 2uxy + uyy = 0 Step 1 A = B = C = 1, so that AC −B2 = 0 and the equation is
parabolic.

Step2:

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0

(
dy

dx

)2

− 2
dy

dx
+ 1 = 0

factors to ( dydx )− 1)2 = 0 and there is the one solution y = x+ C so Φ = (y − x) is a characteristic

Step 3: We need two equations, the second is x times something similar to the first so u = f(y − x) +
xg(y−x) (An early verion of this handout had f(y−x) +Cx which is also a solution by not as general
as possible. Then we had f(y − x) + xf(y − x), which is inbetween, but still not as general as the
current answer) Lets check it ux = −f ′(y − x) + g(y − x) − xg′(y − x), uy = f ′(y − x) + xg′(y − x),



uxx = f ′′(y − x)− g′(y − x)− g′(y − x) + xg′′(y − x), uxy = −f ′′(y − x) + g′(y − x)− xg′′(y − x) and
uyy = f ′′(y − x) + xg′′(y − x) so

uxx+2uxy+uyy = (f ′′(y−x)−2g′(y−x)+xg′′(y−x))+2(−f ′′(y−x)+g′(y−x)−xg′′(y−x))+(f ′′(y−x)+xg′′(y−x)) = 0

Step 4: Let ξ = y − x and η = x then ux = −uξ + uη, uy = uξ + 0uη,

uxx = −(−uξξ + uξη) + (−uηξ + uηη) = uξξ − 2uξη + uηη

uxy = −(uξξ + 0uξη) + (uηξ + 0uηη) = −uξξ + uηξ

uyy = uξξ + 0uξη = uξξ

uxx + 2uxy + uyy = (1− 2 + 1)uξξ + 2(−1 + 1 + 0)uξη + (1 + 0 + 0)uηη = uηη

And so the canonical form is uηη = 0.

• Problem #19 Requires more steps than are in the text. It gives the PDE xuxx − yuxy = 0. Step 1 has
A = x, B = −y/2 and C = 0, so that AC −B2 = −y2/4 < 0 (if y 6= 0) and the equation is hyperbolic.
Step2:

A

(
dy

dx

)2

− 2B
dy

dx
+ C = 0

x

(
dy

dx

)2

+ y
dy

dx
= 0

This factors into
dy

dx

(
x
dy

dx
+ y

)
= 0

The first ODE is dy
dx = 0 or y = C so Φ = y, the second ODE is dy

y = −dxx or y = C/x or xy = C so
Ψ = xy.
The method of the textbook does not correctly handle the next part of the problem. The method of
textbook does work if A,B,C are constants. The additional work needed to solve this in this version
of extra.
Step 3: The table in the text implies u = f(y) + g(xy) should be the solution. But it is not; checking
we see that

ux = yg′(xy); uxx = y2g′′(xy); uxy = xyg′′(xy) + g′(xy)
xuxx − yuxy = xy2g′′(xy)− xy2g′′(xy)− yg′(xy) 6= 0

Instead we need another trick.
The trick is to let p(x, y) = ux, our PDE becomes xpx − ypy which is a first order equation and which
has the general solution p = g(xy) found above. (This is easy to check.) Now we just solve ux = g(xy)
by integration obtaining

u = f(y) +
∫
g(xy) dx = f(y) + h(xy)/y

Why is the
∫
g(xy) dx = h(xy)/y? Well it has to be something whose x-partial is a function of xy. So

in must be an arbitrary function h(xy) but we need to make its x-partial, yh(xy), be an function of
xy; clearly dividing by y does the trick. Checking this solution gives

ux = yh′(xy)/y; uxx = yh′′(xy); uxy = xh′′(xy)

xuxx − yuxy = xyh′′(xy)− xyh′′(xy) = 0

Step 4: ξ = y, η = xy ux = 0uξ + yuη, uy = uξ + xuη, uxx = y(0uηξ + yuηη) = y2uηη, uxy =
uη + y(xuηξ + uηη) = yuηη + xyuηξ + uη, uyy = uξξ + xuξη + x(uηξ + xuηη) = uξξ + 2xuηξ + x2uηη

xuxx − yuxy = xy2uηη − (y2uηη + xy2uηξ + yuη = xy2uηξ + yuη

Dividing by xy2 = yη we get the canonical

uηξ + uη/η = 0

since the second term is lower order we are ok.


