Extra Problems and Examples

Steven Bellenot

June 29, 2007

1 Separation of Variables

Find the solution $u(x, y)$ to the following equations by separating variables.

1. $u_{x}+u_{y}=0$
2. $u_{x}-u_{y}=0$
answer: $u=c e^{k(x+y)}$
3. $y^{2} u_{x}-x^{2} u_{y}=0$
4. $u_{x}+u_{y}=(x+y) u$
answer: $u=c \exp \left[\frac{1}{2}\left(x^{2}+y^{2}\right)+k(x-y)\right]$
5. $u_{x x}+u_{y y}=0$
6. $u_{x y}-u=0$
answer: $u=c \exp (k x+y / k)$
7. $u_{x x}-u_{y y}=0$
8. $x u_{x y}-2 y u=0$
answer: $u=x^{k} e^{-y^{2} / k}$
Solution to \#4 above. Let $u=X(x) Y(y)$, plugging to the equation gives

$$
\begin{aligned}
& X^{\prime}(x) Y(y)+X(x) Y^{\prime}(y)=(x+y) X(x) Y(y) \\
& \frac{X^{\prime}(x)}{X(x)}+\frac{Y^{\prime}(y)}{Y(y)}=(x+y) \\
& \frac{X^{\prime}(x)}{X(x)}-x=k=y-\frac{Y^{\prime}(y)}{Y(y)}
\end{aligned}
$$

for some constant k. We have two ODE to solve

$$
X^{\prime}(x)-(x+k) X(x)=0 \quad \text { and } \quad Y^{\prime}(y)-(y-k) Y(y)=0
$$

The first has an integrating factor of $\exp \left(-x^{2} / 2-k x\right)$ and solution $X(x)=C \exp \left(x^{2} / 2+k x\right)$. The second has an integrating factor of $\exp \left(-y^{2} / 2+k y\right)$ and solution $Y(y)=C \exp \left(y^{2} / 2-k y\right)$. Multiplying the ODE solutions gives the answer above.

Solution to $\# 7 . u=X(x)(Y(y)$

$$
\begin{gathered}
X^{\prime \prime}(x) Y(y)-X(x) Y^{\prime \prime}(y)=0 \\
\frac{X^{\prime \prime}(x)}{X(x)}=k=\frac{Y^{\prime \prime}(y)}{Y(y)}
\end{gathered}
$$

$$
X^{\prime \prime}(x)-k X(x)=0 \quad Y^{\prime \prime}(y)-k Y(y)=0
$$

Supposing $k \neq 0$, we get $X(x)=C_{1} e^{\omega x}+C_{2} e^{-\omega x}$ and $Y(y)=C_{1} e^{\omega y}+C_{2} e^{-\omega y}$, where ω is the (possibly complex) number so that $\omega^{2}=k$. Our answer has 4 terms

$$
u=A \exp (\omega(x+y))+B \exp (\omega(x-y))+C \exp (\omega(y-x))+D \exp (-\omega(x+y))
$$

If $k<0$ and changing ω so that $k=-\omega^{2}$ we have the alternate solution $X(x)=C_{1} \cos \omega x+C_{2} \sin \omega y$ and $Y(y)=C_{1} \cos \omega y+C_{2} \sin \omega y$ Our answer has four different terms

$$
u=A \cos \omega x \cos \omega y+B \cos \omega x \sin \omega y+C \sin \omega x \cos \omega y+D \sin \omega x \sin \omega y
$$

Finally if $k=0, X(x)=C_{1} x+C_{2}$ and $Y(y)=C_{1} y+C_{2}$ giving the solution

$$
u=A x y+B x+C y+D
$$

2 Characteristic examples, Normal form table

If the PDE is $a u_{x x}+b u_{x y}+c u_{y y}=0$ and the roots of $a x^{2}-b x+c$ are r and s. (Note the sign change from b in the PDE to $-b$ in the polynomial.) The constant coefficient case looks like:

Type	Hyperbolic	Parabolic	Elliptic
Roots r and s	real and $r \neq s$	real and $r=s$	complex $r=a+b i, s=a-b i$
Characteristics	$\Phi=y-r x, \Psi=y-s x$	$\Phi=\Psi=y-r x$	$\Phi=y-r x, \Phi=y-s x$
New variables	$\xi=y-r x, \eta=y-s x$	$\xi=x, \eta=y-r x$	$\xi=y-a x, \eta=b x$
Solution	$u=f(y-r x)+g(y-s x)$	$u=f(y-r x)+x g(y-r x)$	$u=f(y-r x)+g(y-s x)$
Normal form	$u_{\xi \eta}=0$ or $u_{\xi \xi}-u_{\eta \eta}=0$	$u_{\eta \eta}=0$	$u_{\xi \xi}+u_{\eta \eta}=0$

Some motivation for why this works.
Of course the most interesting question is why the sign change? It is not hard to check that $a x^{2}+b x+c$ and $a x^{2}-b x+c$ have the roots that are negative of each other. So if r and s are roots of $a x^{2}-b x+c$ then $-r$ and $-s$ are roots of $a x^{2}+b x+c$. Eventually this means $a x^{2}+b x+c=a(x+r)(x+s)$. Symbolically we can write

$$
a\left(\frac{\partial}{\partial x}+r \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}+s \frac{\partial}{\partial y}\right) u=a u_{x x}+b u_{x y}+c u_{y y}=0
$$

If you look at $u_{x}+r u_{y}=0$, this says that the directional derivation of u in the $\langle 1, r\rangle$ direction is always zero. So u is constant along lines perpendicular to $\langle-r, 1\rangle$, that is u is constant on lines of the form $y-r x=C$ for some constant C. This change of sign reflects the change from the direction to the normal direction.

3 Characteristic examples, Normal form problems

- We do the wave equation first $c^{2} u_{x x}-u_{y y}=0$. Step 1: $A=c^{2}, B=0, C=-1$ and thus $A C-B^{2}=$ $-c^{2}<0$ so the equation is hyperbolic.
Step 2: is the find the characteristics, we need to solve

$$
\begin{gathered}
A\left(\frac{d y}{d x}\right)^{2}-2 B \frac{d y}{d x}+C=0 \\
c^{2}\left(\frac{d y}{d x}\right)^{2}-1=0 \\
\frac{d y}{d x}= \pm 1 / c
\end{gathered}
$$

Which gives $y=x / c+C$ and $y=-x / c+C$ so $\Phi=x-c y$ and $\Psi=x+c y$ are the characterics.

Step 3: We solve the equation as $u=f(x-c y)+g(x+c y)$ Check that it solves the equation.
Step 4: Transforms $\xi=x-c y$ and $\eta=x+c y$ gives $u_{x}=u_{\xi}+u_{\eta}, u_{y}=-c u_{\xi}+c u_{\eta}, u_{x x}=$ $u_{\xi \xi}+u_{\xi \eta}+u_{\eta \xi}+u_{\eta \eta}, u_{y y}=c^{2} u_{\xi \xi}-c^{2} u_{\xi \eta}-c^{2} u_{\eta \xi}+c^{2} u_{\eta \eta}$, So

$$
c^{2} u_{x x}-u_{y y}=4 c^{2} u_{\xi \eta}
$$

and the equation has the canonical form $u_{\xi \eta}=0$

- Problem $\# 13$ in $\S 12.4$ gives the PDE $u_{x x}+9 u_{y y}$ and asks us to find the type, transform to normal form and solve. Step 1 is to classify the equation, clearly $A=1, B=0$ and $C=9$ so that $A C-B^{2}=9>0$ and the equation is elliptic.

Step 2 is to find the characterics, we need to solve

$$
\begin{gathered}
A\left(\frac{d y}{d x}\right)^{2}-2 B \frac{d y}{d x}+C=0 \\
\left(\frac{d y}{d x}\right)^{2}+9=0 \\
\frac{d y}{d x}= \pm 3 i
\end{gathered}
$$

Which gives $y=3 i x$ and $y=-3 i x$, we write these as $\Phi=y-3 i x$ and $\Psi=y+3 i x$ as characteristics. Step 3 from the characteristics, we can solve the equation as

$$
u(x, y)=f(y-3 i x)+g(y+3 i x)
$$

Note assuming complex variables behave

$$
\begin{gathered}
u_{x x}=(-3 i)^{2} f^{\prime \prime}(y-3 i x)+(3 i)^{2} g^{\prime \prime}(y+3 i x)=-9 f^{\prime \prime}-9 g^{\prime \prime} \\
u_{y y}=f^{\prime \prime}(y-3 i x)+g^{\prime \prime}(y+3 i x)=f^{\prime \prime}+g^{\prime \prime}
\end{gathered}
$$

and clearly $u_{x x}+9 u_{y y}=0$.
Step 4, we use the transformations $\xi=(\Phi+\Psi) / 2=y$ and $\eta=(\Phi-\Psi) / 2 i=3 x$ to change the PDE to the canonical form $u_{\xi \xi}+u_{\eta \eta}=0$. Eventually $u_{\xi \xi}=u_{y y}$ and $9 u_{\eta \eta}=u_{x x}$.
The change rule was use in step 4 .

$$
\begin{gathered}
u_{x}=u_{\xi} \xi_{x}+u_{\eta} \eta_{x}=0 u_{\xi}+3 u_{\eta}=3 u_{\eta} \\
u_{x x}=3\left(u_{\eta \xi} \xi_{x}+u_{\eta \eta} \eta_{x}\right)=9 u_{\eta \eta}
\end{gathered}
$$

- Problem \#15 $u_{x x}+2 u_{x y}+u_{y y}=0$ Step $1 A=B=C=1$, so that $A C-B^{2}=0$ and the equation is parabolic.
Step2:

$$
\begin{gathered}
A\left(\frac{d y}{d x}\right)^{2}-2 B \frac{d y}{d x}+C=0 \\
\left(\frac{d y}{d x}\right)^{2}-2 \frac{d y}{d x}+1=0
\end{gathered}
$$

factors to $\left.\left(\frac{d y}{d x}\right)-1\right)^{2}=0$ and there is the one solution $y=x+C$ so $\Phi=(y-x)$ is a characteristic
Step 3: We need two equations, the second is x times something similar to the first so $u=f(y-x)+$ $x g(y-x)$ (An early verion of this handout had $f(y-x)+C x$ which is also a solution by not as general as possible. Then we had $f(y-x)+x f(y-x)$, which is inbetween, but still not as general as the current answer) Lets check it $u_{x}=-f^{\prime}(y-x)+g(y-x)-x g^{\prime}(y-x), u_{y}=f^{\prime}(y-x)+x g^{\prime}(y-x)$,
$u_{x x}=f^{\prime \prime}(y-x)-g^{\prime}(y-x)-g^{\prime}(y-x)+x g^{\prime \prime}(y-x), u_{x y}=-f^{\prime \prime}(y-x)+g^{\prime}(y-x)-x g^{\prime \prime}(y-x)$ and $u_{y y}=f^{\prime \prime}(y-x)+x g^{\prime \prime}(y-x)$ so
$u_{x x}+2 u_{x y}+u_{y y}=\left(f^{\prime \prime}(y-x)-2 g^{\prime}(y-x)+x g^{\prime \prime}(y-x)\right)+2\left(-f^{\prime \prime}(y-x)+g^{\prime}(y-x)-x g^{\prime \prime}(y-x)\right)+\left(f^{\prime \prime}(y-x)+x g^{\prime \prime}(y-x)\right)=0$
Step 4: Let $\xi=y-x$ and $\eta=x$ then $u_{x}=-u_{\xi}+u_{\eta}, u_{y}=u_{\xi}+0 u_{\eta}$,

$$
\begin{gathered}
u_{x x}=-\left(-u_{\xi \xi}+u_{\xi \eta}\right)+\left(-u_{\eta \xi}+u_{\eta \eta}\right)=u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta} \\
u_{x y}=-\left(u_{\xi \xi}+0 u_{\xi \eta}\right)+\left(u_{\eta \xi}+0 u_{\eta \eta}\right)=-u_{\xi \xi}+u_{\eta \xi} \\
u_{y y}=u_{\xi \xi}+0 u_{\xi \eta}=u_{\xi \xi} \\
u_{x x}+2 u_{x y}+u_{y y}=(1-2+1) u_{\xi \xi}+2(-1+1+0) u_{\xi \eta}+(1+0+0) u_{\eta \eta}=u_{\eta \eta}
\end{gathered}
$$

And so the canonical form is $u_{\eta \eta}=0$.

- Problem \#19 Requires more steps than are in the text. It gives the PDE $x u_{x x}-y u_{x y}=0$. Step 1 has $A=x, B=-y / 2$ and $C=0$, so that $A C-B^{2}=-y^{2} / 4<0($ if $y \neq 0)$ and the equation is hyperbolic. Step2:

$$
\begin{gathered}
A\left(\frac{d y}{d x}\right)^{2}-2 B \frac{d y}{d x}+C=0 \\
x\left(\frac{d y}{d x}\right)^{2}+y \frac{d y}{d x}=0
\end{gathered}
$$

This factors into

$$
\frac{d y}{d x}\left(x \frac{d y}{d x}+y\right)=0
$$

The first ODE is $\frac{d y}{d x}=0$ or $y=C$ so $\Phi=y$, the second ODE is $\frac{d y}{y}=-\frac{d x}{x}$ or $y=C / x$ or $x y=C$ so $\Psi=x y$.
The method of the textbook does not correctly handle the next part of the problem. The method of textbook does work if A, B, C are constants. The additional work needed to solve this in this version of extra.
Step 3: The table in the text implies $u=f(y)+g(x y)$ should be the solution. But it is not; checking we see that

$$
\begin{gathered}
u_{x}=y g^{\prime}(x y) ; \quad u_{x x}=y^{2} g^{\prime \prime}(x y) ; \quad u_{x y}=x y g^{\prime \prime}(x y)+g^{\prime}(x y) \\
x u_{x x}-y u_{x y}=x y^{2} g^{\prime \prime}(x y)-x y^{2} g^{\prime \prime}(x y)-y g^{\prime}(x y) \neq 0
\end{gathered}
$$

Instead we need another trick.
The trick is to let $p(x, y)=u_{x}$, our PDE becomes $x p_{x}-y p_{y}$ which is a first order equation and which has the general solution $p=g(x y)$ found above. (This is easy to check.) Now we just solve $u_{x}=g(x y)$ by integration obtaining

$$
u=f(y)+\int g(x y) d x=f(y)+h(x y) / y
$$

Why is the $\int g(x y) d x=h(x y) / y$? Well it has to be something whose x-partial is a function of $x y$. So in must be an arbitrary function $h(x y)$ but we need to make its x-partial, $y h(x y)$, be an function of $x y$; clearly dividing by y does the trick. Checking this solution gives

$$
\begin{gathered}
u_{x}=y h^{\prime}(x y) / y ; \quad u_{x x}=y h^{\prime \prime}(x y) ; \quad u_{x y}=x h^{\prime \prime}(x y) \\
x u_{x x}-y u_{x y}=x y h^{\prime \prime}(x y)-x y h^{\prime \prime}(x y)=0
\end{gathered}
$$

Step 4: $\xi=y, \eta=x y u_{x}=0 u_{\xi}+y u_{\eta}, u_{y}=u_{\xi}+x u_{\eta}, u_{x x}=y\left(0 u_{\eta \xi}+y u_{\eta \eta}\right)=y^{2} u_{\eta \eta}, u_{x y}=$ $u_{\eta}+y\left(x u_{\eta \xi}+u_{\eta \eta}\right)=y u_{\eta \eta}+x y u_{\eta \xi}+u_{\eta}, u_{y y}=u_{\xi \xi}+x u_{\xi \eta}+x\left(u_{\eta \xi}+x u_{\eta \eta}\right)=u_{\xi \xi}+2 x u_{\eta \xi}+x^{2} u_{\eta \eta}$

$$
x u_{x x}-y u_{x y}=x y^{2} u_{\eta \eta}-\left(y^{2} u_{\eta \eta}+x y^{2} u_{\eta \xi}+y u_{\eta}=x y^{2} u_{\eta \xi}+y u_{\eta}\right.
$$

Dividing by $x y^{2}=y \eta$ we get the canonical

$$
u_{\eta \xi}+u_{\eta} / \eta=0
$$

since the second term is lower order we are ok.

