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1 Separation of Variables

Find the solution u(zx,y) to the following equations by separating variables.
1 uy+uy =0

2. uy —uy =0
answer: u = ceF(*+y)
3. y2u, — x2uy =0
4. uy +uy = (z+y)u
answer: u = cexp [3(2% 4+ y*) + k(z — y)]
S, Ugy + Uyy =0

6. ugy —u=20

answer: u = cexp(kz + y/k)
T Ugy — Uyy =0
8. TUgzy — 2yu =0
answer: u = ke v’ /k
Solution to #4 above. Let u = X (z)Y (y), plugging to the equation gives

X' ()Y (y) + X(2)Y'(y) = (z +y) X ()Y (y)
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for some constant k. We have two ODE to solve
X'(x) = (z+k)X(z)=0 and Y'(y)—(y—k)Y(y)=0

The first has an integrating factor of exp(—2/2—kx) and solution X (z) = C exp(x?/2+kx). The second
has an integrating factor of exp(—y?/2 + ky) and solution Y (y) = Cexp(y?/2 — ky). Multiplying the ODE
solutions gives the answer above.

Solution to #7. u = X (z)(Y(y)

[t



X"z)—kX(x)=0 Y'(y)—kY(y)=0

Supposing k # 0, we get X (z) = C1e¥® 4+ Cae™** and Y (y) = C1e*? + Coe™ Y, where w is the (possibly
complex) number so that w? = k. Our answer has 4 terms

u= Aexp(w(z +y)) + Bexp(w(z —y)) + Cexp(w(y — x)) + Dexp(—w(z +y))

If k£ < 0 and changing w so that k = —w? we have the alternate solution X (z) = C} coswz + Cy sinwy and
Y (y) = C1 coswy + Cy sinwy Our answer has four different terms

u = Acoswx coswy + B coswz sinwy + C sinwz cos wy + D sin wz sin wy

Finally if £k =0, X(z) = C1z + Cs and Y (y) = C1y + C5 giving the solution

u=Azy+ Bx+Cy+ D

2 Characteristic examples, Normal form table

If the PDE is aug, + bugy + cuyy = 0 and the roots of ar? — bx + c are r and s. (Note the sign change from

b in the PDE to —b in the polynomial.) The constant coefficient case looks like:

Type Hyperbolic Parabolic Elliptic

Roots r and s | real and r # s real and r = s complex r =a+bi, s =a — bi
Characteristics | @ =y —rx, ¥ =y — sz P=U=y—rx b=y—rz,d=y—sx

New variables | £ =y —rx, n=y — sx E=x,n=y—rx E=y—ax,n="\bx

Solution u=fly—rz)+gly—sz) | u=fly—re)+agly—ra) | u=fly—rz)+g(y — sz)
Normal form Ugy = 0 or uge — Uy =0 Upy = 0 Uge + Uyy = 0

Some motivation for why this works.
Of course the most interesting question is why the sign change? It is not hard to check that az? + bx + ¢
and az? — bz + ¢ have the roots that are negative of each other. So if r and s are roots of ax? — bx + ¢ then
—r and —s are roots of axz® + bx + c¢. Eventually this means az? + bz + ¢ = a(z + r)(x + s). Symbolically

we can write
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) U= QUgg + DUgy + clyy = 0

If you look at u, + ru, = 0, this says that the directional derivation of u in the (1,r) direction is
always zero. So u is constant along lines perpendicular to (—r, 1), that is u is constant on lines of the form
y — rx = C for some constant C. This change of sign reflects the change from the direction to the normal

direction.

3 Characteristic examples, Normal form problems

e We do the wave equation first c?ug,
—c? < 0 so the equation is hyperbolic.

—uy, =0. Step 1: A=¢c%* B=0,C = -1 and thus AC — B =

Step 2: is the find the characteristics, we need to solve

A

dy 2 dy
7} —9B=< =
dx) dx+c 0
dy 2
2
7)) 1=
C (dm) 0
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= =41
dzx /e

Which gives y = z/c+ C and y = —z/c+ C so ® =z — cy and ¥ = z + ¢y are the characterics.




Step 3: We solve the equation as u = f(x — cy) + g(x + cy) Check that it solves the equation.
Step 4: Transforms £ = x —cy and n = = + cy gives Uy = Ug + Uy, Uy = —CUg + CUy, Ugy =
Ugg + Uy + Ung + Uy, Uyy = Puge — gy — une + gy, So
CQUM — Uyy = 462u§77
and the equation has the canonical form wug,;, =0

Problem #13 in §12.4 gives the PDE u,, +9uy, and asks us to find the type, transform to normal form
and solve. Step 1 is to classify the equation, clearly A =1, B =0 and C = 9 so that AC —B? =9 >0
and the equation is elliptic.

Step 2 is to find the characterics, we need to solve

dy 2 dy
Al-=Z) —-2B-—~=2 =
(d:z:) dx+c 0
dy 2
(Y 4oms
dy .
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Which gives y = 3iz and y = —3ix, we write these as ® = y — 3ix and ¥ = y + 3iz as characteristics.

Step 3 from the characteristics, we can solve the equation as
u(z,y) = fy — 3iz) + gy + 3ix)
Note assuming complex variables behave
Ugy = (—30) f"(y — 3iz) + (3i)%¢" (y + 3iz) = —9f" — 9g”
uyy = f"(y — 3ix) + " (y + 3iz) = " + "

and clearly g, + 9uyy = 0.

Step 4, we use the transformations £ = (& + ¥)/2 = y and n = (& — ¥)/2i = 3z to change the PDE
to the canonical form uee + uy, = 0. Eventually uge = uyy and Yy, = Uy

The change rule was use in step 4.
Ug = Ue&y + UyNz = Oug + 3u,y = 3uy,
Upz = 3(Unebs + Unyz) = Mgy

Problem #15 ugy + 2Ugy + uyy = 0 Step 1 A= B = C =1, so that AC — B? =0 and the equation is
parabolic.

Step2:
dy 2 dy
Al-—=| —-2B-= =
(dm) dx =0
dy 2 dy
<d:v> dx * 0

factors to (9%) —1)2 = 0 and there is the one solution y = 2 + C so ® = (y — z) is a characteristic
dx

Step 3: We need two equations, the second is x times something similar to the first so u = f(y — x) +
zg(y —x) (An early verion of this handout had f(y —x)+ Cz which is also a solution by not as general
as possible. Then we had f(y — x) + zf(y — x), which is inbetween, but still not as general as the
current answer) Lets check it u, = —f'(y —2) + gy — ) —2g'(y — x), uy = f'(y — x) + z¢'(y — x),



Uge = f"(y—2) —g'(y —2) —g'(y —2) + 29" (y — ), uzy = —f"(y —2) + ¢'(y — ) — 29" (y — ) and
Uyy = f"(y — ) + 29" (y — x) s0

Une+2Ugytuyy = (f'(y—2)=2¢"(y—2)+ag" (y—))+2(— " (y—2)+¢ (y—2)—2g" (y—2))+ (" (y—2)+2g" (y—2)) = 0
Step 4: Let { =y — x and n = x then u, = —ue + uy, uy = ug + Ouy,
Uzz = —(—Uge + Ugn) + (—Une + Uny) = Uge — 2ugy + Uny
Uay = —(uge + Ougy) + (ung + Oupy) = —tge + une
Uyy = Uge + Ougy = uge
Upg + 2Ugy + Uyy = (1 — 24+ Duge +2(—14+ 1+ 0)ugy + (1 4+ 0+ 0)uyy = tpy
And so the canonical form is u,, = 0.
Problem #19 Requires more steps than are in the text. It gives the PDE zu;, — yugy = 0. Step 1 has
A=z, B=—y/2and C =0, so that AC — B?> = —4?/4 < 0 (if y # 0) and the equation is hyperbolic.
Step2:

dy 2 dy
Al = —2B-—~=2 =
<d:1c> derC 0

dy 2 dy
x(dm) er%—()

dy ( dy _

TheﬁrstODEis%:Oory:Cso<I>:y,thesecondODEisd—y:—d—r ory=C/zoraxy=C so
T Y x

U = zy.

The method of the textbook does not correctly handle the next part of the problem. The method of
textbook does work if A, B, C are constants. The additional work needed to solve this in this version
of extra.

Step 3: The table in the text implies u = f(y) + g(zy) should be the solution. But it is not; checking
we see that

This factors into

Uy =Yg (2Y); U = ¥79" (@Y);  Uay = zyg” (zy) + ¢’ (zy)
TUge — YUay = y°g" (xy) — 249" (xy) — yg'(xy) # 0
Instead we need another trick.

The trick is to let p(z,y) = ug, our PDE becomes xp, — yp, which is a first order equation and which
has the general solution p = g(xy) found above. (This is easy to check.) Now we just solve u, = g(xy)
by integration obtaining

w=fly) + / g(zy) dz = F(y) + h(zy)/y

Why is the [ g(zy)dz = h(zy)/y? Well it has to be something whose z-partial is a function of zy. So
in must be an arbitrary function h(zy) but we need to make its z-partial, yh(zy), be an function of
xy; clearly dividing by y does the trick. Checking this solution gives

ug = yh' (2y)/y;  Use = yh' (2y);  Uzy = zh” (2y)
Tlgy — YUay = 2yh” (xy) — xyh” (xy) =0

Step 4: £ =y, n = a2y Uy = Oug + Yuy, Uy = Ug + TUy, Uze = Y(OUpe + Yuyy) = y2um7, Ugy =
U + Y( Bt + tpy) = Ylny + TYtng + Uy, Uyy = Uge + Tugy + 2 (Une + Tthyy) = uge + 2Tupe + 7% uyy

Ply — Yllay = TY Uy — (Y Uy + Ty e + yuy = 2y*une + yuy
Dividing by zy? = yn we get the canonical
Ung + un /1 =0

since the second term is lower order we are ok.



