Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. A lumber company owns 7000 birch trees. Each year the company plans to harvest 12 percent of its trees and then plant 600 new ones. Write a recurrence relation and initial conditions for the number s_{n} of trees at the end of year n.
2. Given $s_{n}-s_{n-1}-6 s_{n-2}=0$. Write the general solution to this recurrence relation. Explicitly find the solution which also satisfies the initial conditions $s_{0}=2, s_{1}=2$.
3. Given $s_{n}+3 s_{n-1}=5$. Write the general solution to this recurrence relation. Explicitly find the solution which also satisfies the initial conditions $s_{0}=4$.
4. For the network below, use the flow augmentation algorithm to find a maximal flow, and its value. Use the text's convention for labeling vertices in alphabetical order when there is a choice.

5. Find the smallest sum of an independent set of entries from the matrix below and indicate an independent set of entries that has this smallest sum.

$$
\left[\begin{array}{llll}
8 & 2 & 4 & 6 \\
3 & 1 & 7 & 5 \\
4 & 6 & 5 & 3 \\
4 & 5 & 2 & 1
\end{array}\right]
$$

6. Write a recurrence relation and initial conditions for the number s_{n} of n-bit strings having no four consecutive zeros.
7. Prove by strong induction that the algorithm NPF halts. [NPF computes the number of primes (counting repetitions) in the prime factorization of n.]
```
integer NPF ( integer n )
if n less than or equal to 1
    return 0
else if n is prime
    return 1
else let p be the smallest integer greater than 1 s.t. p divides n and let q be n/p
    return NPF ( p ) + NPF ( q )
```

8. It can be shown that for an input of length n, the run time, s_{n}, of some divide and conquer algorithm satisfies the recurrence relation $s_{n}=2 s_{n / 2}+3 n$ and $s_{1}=1$. Solve the recurrence by using the substitution $n=2^{k}$.
