MAD 3105 Discrete Math 2
Test 1
31 Jan 1996
Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Tell how many systems of distinct representatives the given sequence of sets has
A. $\{1,2,4\}\{2,4\},\{3\},\{2,3\}$
B. $\{1,4\},\{2\},\{2,3,5\},\{1,2,4\},\{1,2\}$
C. $\{1,2,3, \ldots n\},\{1,2,3, \ldots n\},\{1,2,3, \ldots n\}$
D. $\{1,2,3, \ldots n\},\{n+1, n+2, \ldots n+m\},\{n+m+1, n+m+2, \ldots, n+m+k\}$
2. Binominal coefficients
A. Draw Pascal's triangle until you get to the row needed for $(x+y)^{7}$
B. Expand $\binom{3 n}{3}$ as a polynominal and simplify.
3. Here is a state table with ouput. Draw the transition diagram and list the output for the input sequence 0111100101 assuming A is the initial state.

Input	A	B	C	D	A	B	C	D
0	A	A	B	C	s	d	d	d
1	B	C	D	D	d	d	d	s

4. and 5. There are two bi-partite graphs below each with a matching (independent) set indicated by the bold edges. For each graph, change the graph into a matrix of zero's and one's with the correct one's starred. Procede with the algorithm of section 5.3 carefulling labeling the matrix, until either the end of step 4 or step 6 which ever comes first. If the algorithm stops in step 4 , write down the vertices in the minimal cover obtained in step 4 . If the algorithm ends in step 6 , re-draw the bi-partite graph indicating the new matching.

5. Solve the bottleneck problem below. Show find the minimum completion time and show any smaller time is not a solution.

$$
\left[\begin{array}{lllll}
3 & 5 & 5 & 3 & 8 \\
4 & 6 & 4 & 2 & 6 \\
4 & 6 & 1 & 3 & 6 \\
3 & 4 & 4 & 6 & 5 \\
5 & 7 & 3 & 5 & 9
\end{array}\right]
$$

7. Given $s_{1}=5$ and $s_{n}=3 s_{n-1}-2^{n-1}$ for $n \geq 2$. Prove by induction $s_{n}=3^{n}+2^{n}$ for $n \geq 1$.
8. Devise a finite state machine (show the transition diagram) with inputs $I=\{0,1\}$ which accepts every string but those that contain 4 consecutive inputs (bits) of the form ' 0101 '.
