Strong Induction Problems.

```
Boolean BinSearch ( int key, SortedListofIntegers s )
if the length of s is zero
    return false
else if the length of s is one
    return true if the list is key otherwise return false
else let k be the middle element of s, s1 the list before k and s2 the list after.
    if key is k
            return true
        else if key < k
            return BinSearch ( key, s1 )
        else
            return BinSearch ( key, s2 )
```

1. Prove by stong induction on the length of the list s that BinSearch halts.
2. Assuming BinSearch halts, prove by stong induction on the length of the list s that BinSearch correctly determines if key is in the list.
```
List MergeSort ( List s )
if the length of the list is less than or equal 1
    return s
else divide the list into halves s1 and and s2 (or as near halves as possible)
    return Merge( MergeSort(s1), MergeSort(s2) )
```

3. Assuming Merge halts, prove by stong induction on the length of the list s that MergeSort halts.
4. Assuming MergeSort halts and Merge is correct, prove by stong induction on the length of the list s that MergeSort returns a sorted list.
VeryLongInteger Multiply (VeryLongInter x, VeryLongInteger y)
Let n be the number of digits in the longest of x and y, and $d=n / 2$.
If n less than or equal 1 return $\mathrm{x} * \mathrm{y}$
else find $x 1, x 2, y 1, y 2$ each have no more than d digits so that $x=x 1 \cdot 10^{d}+x 2$ and $y=y 1 \cdot 10^{d}+y 2$
let $\mathrm{m} 1=$ Multiply ($\mathrm{x} 1, \mathrm{y} 1$) let m2 = Multiply (x2, y2) let m 3 = Multiply ($\mathrm{x} 1+\mathrm{x} 2, \mathrm{y} 1+\mathrm{y} 2$) - m1 - m2 return $m 1 \cdot 10^{2 d}+m 3 \cdot 10^{d}+m 2$
5. Prove by stong induction on the number of digits n that Multiply halts.
6. Assuming Multiply halts, prove by stong induction on the number of digits n that Multiply correctly multiplies the two numbers x and y .
