\qquad
Show ALL work for credit; Give EXACT answers when possible; Simplify answers;

1. Find and simplify $\int_{1}^{3} x^{2}+\frac{1}{x^{2}} d x$
2. Find the indefinite integral $\int e^{x}+\cos x+\frac{1}{1+x^{2}} d x$
3. Let $G(x)=\int_{0}^{x} f(t) d t$ for the $f(t)$ graphed below. Complete the table of values for $G(x)$ below.

Hint: The corners are located at $(0,3),(6,9),(12,-9)$ and $(15,-3)$
4. Find $\int e^{-2 x}+(x+2)^{100} d x$
5. The velocity function is given to be $v(t)=4 t \sin t^{2}$, find the accceleration $a(t)$ and the net distance traveled between $t=0$ and $t=\pi$.
6. Find and simplify $\int_{0}^{1} \frac{y^{2}}{1+y} d y$
7. $F(x)=\int_{0}^{x} \frac{t}{1+t^{2}} d t$, find and simpify $F^{\prime \prime}(x)$. [Hint Fundamental Theorem of Calculus]
8. Find and simplify $\int_{e^{16}}^{e^{64}} \frac{d t}{t \sqrt{\ln t}}$
9. Set up, but do NOT evaluate, an integral for the volume of the solid obtained by rotating the triangular region between the curves $y=x-1, y=0$, and $x=2$, about the y-axis. State the name (slab, disk, washer, shell) of the method you used and sketch the triangular region.
10. Sketch the region enclosed by the curves $y=3 \sqrt{x}$ and $y=x+2$, and find the area of the region.

