\qquad
Show ALL work for credit; Give EXACT answers when possible; Simplify answers;

1. Find the position $s(t)$ if the velocity is given by $v(t)=t^{2}+t^{-2}$ and $s(3)=27$.
2. Find the critical points of $f(x)=x^{2} e^{-6 x}$
3. Find the $\lim _{x \rightarrow \infty} x^{2} e^{-6 x}$
4. For $f(x)=\ln x, a=1$ and $b=e$, find all c that satisfies both conclusions of the Mean Value Theorem, one of which is

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

5. Find the $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{\cos x-1}$
6. Find the absolute minimum and maximum VALUES of $F(x)=\frac{x}{1+x^{2}}$ on $[-2,3]$
7. Here is the graph of $f^{\prime}(x)$, [NOT the graph of $f(x)$] find the points of inflection of f and the (open) intervals where f is smiling (concave up).

8. Draw the graph of $f(x)$ that fits the given information: $f(0)=2, f^{\prime}(0)=0 ; \lim _{x \rightarrow-\infty} f(x)=-1$, $\lim _{x \rightarrow \infty} f(x)=1 ; f^{\prime}(x)>0$ for $-\infty<x<0, f^{\prime}(x)<0$ for $0<x<\infty ; f^{\prime \prime}(x)>0$ for $-\infty<x<-1$ and for $1<x<\infty$, and $f^{\prime \prime}(x)<0$ for $-1<x<1$.

9. Is the statement True or False? Give a brief reason why.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then $f(x)$ as a local max at $x=c$
(b) The second derivative test fails for $f(x)=x^{100}$ at $x=0$
(c) If $f^{\prime}(c)$ does not exist, then $x=c$ is a critical point of $f(x)$
(d) If $f^{\prime \prime}(c)=0$, then $x=c$ is a point of inflection for $f(x)$.
(e) If $f(x)>0, \lim _{x \rightarrow \infty} f(x)=0$, and $f^{\prime}(x)<0$ then $f^{\prime \prime}(x)<0$
10. Find the MAXIMAL AREA that a rectangle inscribed into a semi-circle of radius R can have.

