MAC 2311 Calculus 1 **Test 3** 21 Mar 2007 Name:

Show ALL work for credit; Give EXACT answers when possible; Simplify answers;

1. Find the position s(t) if the velocity is given by $v(t) = t^2 + t^{-2}$ and s(3) = 27.

2. Find the critical points of $f(x) = x^2 e^{-6x}$

3. Find the $\lim_{x\to\infty} x^2 e^{-6x}$

4. For $f(x) = \ln x$, a = 1 and b = e, find all c that satisfies both conclusions of the Mean Value Theorem, one of which is

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

5. Find the $\lim_{x \to 0} \frac{\sin x^2}{\cos x - 1}$

6. Find the absolute minimum and maximum **VALUES** of $F(x) = \frac{x}{1+x^2}$ on [-2,3]

7. Here is the graph of f'(x), [NOT the graph of f(x)] find the points of inflection of f and the (open) intervals where f is smilling (concave up).

8. Draw the graph of f(x) that fits the given information: f(0) = 2, f'(0) = 0; $\lim_{x \to -\infty} f(x) = -1$, $\lim_{x \to \infty} f(x) = 1$; f'(x) > 0 for $-\infty < x < 0$, f'(x) < 0 for $0 < x < \infty$; f''(x) > 0 for $-\infty < x < -1$ and for $1 < x < \infty$, and f''(x) < 0 for -1 < x < 1.

- 9. Is the statement True or False? Give a brief reason why.
 - (a) If f'(c) = 0 and f''(c) > 0 then f(x) as a local max at x = c
 - (b) The second derivative test fails for $f(x) = x^{100}$ at x = 0
 - (c) If f'(c) does not exist, then x = c is a critical point of f(x)
 - (d) If f''(c) = 0, then x = c is a point of inflection for f(x).
 - (e) If f(x) > 0, $\lim_{x\to\infty} f(x) = 0$, and f'(x) < 0 then f''(x) < 0
- 10. Find the **MAXIMAL AREA** that a rectangle inscribed into a semi-circle of radius R can have.

