Show ALL work for credit; Give EXACT answers when possible; Simplify answers;

1. $\lim _{t \rightarrow 3} \frac{t^{2}-2 t-3}{t^{2}-4 t+3}$
2. $\lim _{h \rightarrow 0} \frac{2}{h}\left(\frac{5}{(x+h)^{2}}-\frac{5}{x^{2}}\right)$
3. $\lim _{x \rightarrow \infty} \frac{x^{2}-x-3 x^{3}}{x^{2}-4 x^{3}+3}$
4. $\lim _{h \rightarrow 0} \frac{x^{2} h}{\sqrt{x+h}-\sqrt{x}}$
5. Let $D(t)$ be the U. S. National debt at time t, the table below gives approximate values of this function by providing end of year estimates, in billions of dollars. Estimate $D^{\prime}(1990)$ and INCLUDE UNITS in your answer.

t	1980	1985	1990	1995	2000
$D(t)$	930	1945	3233	4974	5672

6. Find the hortizontal and vertical asymptotes of $h(x)=\frac{4 x}{\sqrt{x^{2}+9}}$ (if none say none).
7. For the function $g(t)$ answer the true false questions below. (Use T or F)

$$
g(t)= \begin{cases}1-t & t<1 \\ t^{2} & 1 \leq t<2 \\ 5 & t=2 \\ t^{2} & 2<t \leq 3 \\ 3 t & 3<t\end{cases}
$$

(a) $g(t)$ is continuous at 0 . \qquad
(b) $g(t)$ is continuous at 1 . \qquad
(c) $g(t)$ is continuous at 2 . \qquad
(d) $g(t)$ is continuous at 3 . \qquad
(e) $g(t)$ is right continuous at 1 . \qquad
(f) $g(t)$ is left continuous at 1 .
(g) $g(t)$ is right continuous at 3 . \qquad
(h) $g(t)$ is left continuous at 3 . \qquad
(i) $g(t)$ has a jump discontinuity at 2 .
(j) $g(t)$ has a removable discontinuity at 2 .
8. If $f(x)$ is the function the graph below left, list the following in increasing order:

$$
0, \quad f^{\prime}(10), \quad \frac{f(12)-f(10)}{2}, \quad f(11)-f(10)
$$

9. If $g(x)$ is the function in graph to above right estimate $g^{\prime}(1)$ and find the equation of the tangent line at $x=1$
10. On the bottom graph draw the derivative of $f(x)$ the curve on the top graph. Be especially careful about the placement of the zero's of $f^{\prime}(x)$.

