Practice Mini-Test 1 and answers - Calculus 3 - Spring 04

1. Q3 F03 Plot the points $P(3,5,-1)$ and $Q(-3,3,5)$ on a 3D graph (whose axeses are in the usual positions). Draw the vector $\overrightarrow{P Q}$ on the graph and write $\overrightarrow{P Q}$ in the $\langle ?, ?, ?\rangle$ notation.
See http://www.math.fsu.edu/~bellenot/class/f03/quiz/q3a28.pdf.
2. T1\#4 S02 Find the center and radius of the sphere S given by the equation $x^{2}+y^{2}+z^{2}+2 x+8 y-4 z=$ 28. The graph of S intersects the $x z$-plane in a circle, what is its equation, its center and its radius. [compare T1\#1 F03]
$\left(x^{2}+2 x+1\right)+\left(y^{2}+8 y+16\right)+\left(z^{2}-4 z+4\right)=28+1+16+4$
$(x+1)^{2}+(y+4)^{2}+(z-2)^{2}=7^{2}$
The sphere has center $(-1,-4,2)$ and radius 7 . The $x z$-plane is $y=0$ so $(x+1)^{2}+16+(z-2)^{2}=49$ or $(x+1)^{2}+(z-2)^{2}=(\sqrt{33})^{2}$ so center at $(-1,0,2)$ and radius $\sqrt{33}$.
3. T1\#1 S03 Find the equation of the plane parallel to the plane $3 x-4 y-6 z=21$ and passing through the point $(-3,1,2)$ and find the distance between the two parallel planes. [compare T1\#1 F02]
Equation of the plane is $3 x-4 y-6 z=3(-3)-4(1)-6(2)=-9-4-12=-25$.
Distance is $|3(-3)-4(1)-6(2)-21| / \sqrt{3^{2}+4^{2}+6^{2}}=46 / \sqrt{61}$
4. T1\#2 F03 Find the equation of the plane through the points $(2,1,-2),(3,-1,2)$ and $(4,0,1)$. [compare T1\#2 S03, T1\#2 F02]
Let $A(2,1,-2), B(3,-1,2)$ and $C(4,0,1)$. Then $\overrightarrow{A B}=\langle 1,-2,4\rangle$ and $\overrightarrow{A C}=\langle 2,-1,3\rangle$ so the cross product $\overrightarrow{A B} \times \overrightarrow{A C}$ is $\langle-2,5,3\rangle$. Checking:
$\langle-2,5,3\rangle \cdot\langle 1,-2,4\rangle=-2-10+12=0 \checkmark \quad\langle-2,5,3\rangle \cdot\langle 2,-1,3\rangle=-4-5+9=0 \checkmark$
So the equation is $-2 x+5 y+3 z=-2(2)+5(1)+3(-2)=-5$
5. T1\#3 F03 Let $P(3,-2,2)$ and $\vec{v}=\langle 3,-1,5\rangle$, find:
(a) The equation of the line through P in the direction of \vec{v} The equation in parametric form: $x=3+3 t, y=-2-t, z=2+5 t$
(b) The coordinates of the point where the line in (a) intersects the $x z$-plane.

The $x z$-plane is where $y=0$, and $0=-2-t$ implies $t=-2$ which yields the point $(-3,0,-8)$.
(c) The equation of the plane perpendicular to \vec{v} through P.

The equation is $3 x-y+5 z=3(3)-(-2)+5(2)=21$
(d) The coordinates of the point where the y-axis intersects the plane in (c).

The y-axis has $x=0$ and $z=0$ hence $3(0)-y+5(0)=21$ or the point is $(0,-21,0)$.
6. T1\#6 F03 A treasure map reads start at the big X, walk 40 paces north, 20 paces northwest and dig a hole 10 paces deep. Write the vector \vec{v} that goes from the big X to the bottom of the hole and find the exact simplified value of the length squared $\|\vec{v}\|^{2}$. (The x-axis points East, the y-axis points North, and the z-axis points up.) [compare $\mathrm{T} 1 \# 3 \mathrm{~S} 02$, T1\#6 F02]
A vector addition problem. The segments are given by the vectors $\langle 0,40,0\rangle,\langle-20 / \sqrt{2}, 20 / \sqrt{2}, 0\rangle$, and $\langle 0,0,-10\rangle$, so $\vec{v}=\langle-20 / \sqrt{2}, 40+20 / \sqrt{2},-10\rangle$ and $\|\vec{v}\|^{2}=400 / 2+1600+1600 / \sqrt{2}+400 / 2+100=$ $2100+800 \sqrt{2}$.
7. T1\#8 F03 Using vector operations write $\vec{a}=\langle 2,-1,5\rangle$ as the sum of two vectors, one parallel (say \vec{v}), and one perpendicular (say \vec{w}) to $\vec{b}=\langle-4,4,2\rangle$. [compare T1\#8 S03, T1\#8 F02]
We need a unit vector \vec{u} in the direction of \vec{b} which has length 6 so $\vec{u}=\langle-2 / 3,2 / 3,1 / 3\rangle$. Now $\vec{u} \cdot \vec{a}=-4 / 3-2 / 3+5 / 3=-1 / 3$ so $\vec{a}_{\|}=\vec{v}=\langle 2 / 9,-2 / 9,-1 / 9\rangle$ and $\vec{a}_{\perp}=\vec{w}=\langle 16 / 9,-7 / 9,46 / 9\rangle$. Check $\vec{b} \cdot \vec{w}=-64 / 9-28 / 9+92 / 9=0 \checkmark$.
8. T1\#6 S03 Determine if the lines L_{1} and L_{2} are parallel, skew or intersecting. If they intersect, find the point of intersection.
$L_{1}: \quad x=2+t, y=2-t, z=5+3 t$
$L_{2}: \quad x=1-s, y=1+2 s, z=-6+s$ [compare T1\#4 F02]
We get two equations from $x=x$ and $y=y$, namely $2+t=1-s$ and $2-t=1+2 s$ and solving we get $s=2$ and $t=-3$. When $t=-3$ the point on L_{1} is $(-1,5,-4)$. When $s=2$ the point on L_{2} is $(-1,5,-4)$. Since the points agree the lines are intersecting and the point of intersection is $(-1,5,-4)$.
9. T1\#7 S03 Find the parametric equation of the line through the points $P(3,2,8)$ and $Q(4,4,-4)$ and find the two points where it it intersects the elliptical paraboloid $z=x^{2}+y^{2}$. [compare T1\#10 S02]
Velocity vector $\overrightarrow{P Q}=\langle 1,2,-12\rangle$ and parametric equations $x=3+t, y=2+2 t, z=8-12 t$. Solving for t in $8-12 t=(3+t)^{2}+(2+2 t)^{2}$ or $5 t^{2}+26 t+5=0$ which factors to $(5 t+1)(t+5)=0$. When $t=-5$ the point is $(-2,-8,68)$ and when $t=-1 / 5$ the point is $(-14 / 5,8 / 5,52 / 5)$. Checking $(-2)^{2}+(-8)^{2}=4+64=68 \checkmark \quad$ and $(-14 / 5)^{2}+(8 / 5)^{2}=196 / 25+64 / 25=260 / 25=52 / 5 \checkmark$.
10. T1\#9 F03 Find parametric equations of the line of intesection of the two planes $x+2 y+2 z=3$ and $3 x+2 y-2 z=9$.
Find two points, first let $x=0$ and solve both $2 y+2 z=3$ and $2 y-2 z=9$. The first point is (adding gives $4 y=12$ so $y=3$ and $z=-3 / 2)(0,3,-3 / 2)$. Now let $y=0$ and solve both $x+2 z=3$ and $3 x-2 z=9$. Again (adding gives $4 x=12$ so $x=3$ and $z=0$) we get a second point ($3,0,0$). This gives a velocity vector $\vec{v}=\langle 3,-3,3 / 2\rangle$ and hence parametric equations $x=3 t, y=3-3 t, z=-3 / 2+3 t / 2$.
11. T1\#3 S02 For the given vector, write it as an expression in terms of the vectors \vec{a} and \vec{b} suggested by the picture below.
(a) \vec{x}
(b) \vec{w}
(c) \vec{y}

Answers $\vec{x}=\vec{a}+\vec{b}, \vec{w}=\vec{a}-\vec{b}, \vec{y}=2 \vec{a}+\vec{b}, \vec{u}=-\vec{b} /\|\vec{b}\|$ and $\vec{v}=(\vec{a} \cdot(\vec{b} /\|\vec{b}\|))(\vec{b} /\|\vec{b}\|)=\left(\vec{a} \cdot \vec{b} /\|\vec{b}\|^{2}\right) \vec{b}$ the vector projection of \vec{a} in the direction of \vec{b}.

