Extra problems.

- POLAR Change to polar $x=3 ; x^{2}+y^{2}=9 ; x=-y^{2} ; x+y=9$; $x^{2}+y^{2}=2 c x ; x^{2}-y^{2}=1$. Change to Cartesian $r=2 ; r \cos \theta=1 ;$ $r=3 \sin \theta ; r=2 \sin \theta+2 \cos \theta ; r=\csc \theta ; r=\tan \theta \sec \theta$.
- LIMIT Do the following have limits? (Hint: convert to polar.)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}}
$$

- SKEW LINES Find the minimum of $f(s, t)=$ the distance-squared between the points on the two lines $x=1 ; y=1 ; z=t$ and $x=3+s ; y=$ $0 ; z=-s$ using chapt 15 techniques, also find the points on the two lines nearest each other.
- LAGRANGE Find the maximum and minimum values of $f(x, y, z)=$ $x+2 y+3 z$ subject to the two constraints $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$.
- TRIPLE INTEGRAL Change the order of integration of

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f d z d y d x
$$

in the orders $d x d y d z$ and $d y d z d x$. See region2.mws in the maple subdirectory.

- EULER Consider the vector field $\vec{F}=\langle-y-x / 10, x-y / 10\rangle$
- A. Show $\vec{r}(t)=\left\langle e^{-t / 10} \cos t, e^{-t / 10} \sin t\right\rangle$ is a flow for \vec{F}
- B. Use Euler's method to approximate the flow which starts at $(1,0)$ by completing a table that starts like the one below with as much accuracy has your TI-89 can give. [Check to see that you are in both radian mode and using the Euler method]. Do five steps of size $\Delta t=0.1$

