Extra Answers

- contours for $\mathbf{1 2 . 2 \# 7}$ The contours are circles centered at the orgin, if $z=c$, a constant, then the radius of the circle is $\sqrt{5-c}$. Usually the contours are done for "equally spaced" z values, so the the contours themselves are not equally spaced, but get closer and closer as we get farther from the origin.

- Prob 10 test1 spring 2000 A-VII; B-IV; C-II; D-III; E-I; F-VI; G-VIII;

 $\mathrm{H}-\mathrm{V}$.- Prob 10 test2 spring 1996 Contour 1 is $\sin (x+y)$; contour 2 is $\sin (x y)$; contour 3 is $\sin x+\sin y$; and contour 4 is $\sin x \sin y$
- POLAR Change to polar $x=3$ is $r \cos \theta=3$ or $r=3 \sec \theta ; x^{2}+y^{2}=9$ is $r=3 ; x=-y^{2}$ is $r=-\cot \theta \csc \theta ; x+y=9$ is $r=9 /(\cos \theta+\sin \theta)$; $x^{2}+y^{2}=2 c x$ is $r=2 c \cos \theta ; x^{2}-y^{2}=1$ is $r^{2}=1 /\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\sec 2 \theta$ Change to Cartesian $r=2$ is $x^{2}+y^{2}=4 ; r \cos \theta=1$ is $x=1 ; r=3 \sin \theta$ is $x^{2}+y^{2}=3 y$ (a circle); $r=2 \sin \theta+2 \cos \theta$ is $x^{2}+y^{2}=2 y+2 x$ (another circle); $r=\csc \theta$ is $y=1 ; r=\tan \theta \sec \theta$ is $x^{2}=y$ (a parabola).
- LIMIT Do the following have limits? (Hint: convert to polar.)

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}} \\
& \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\frac{r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta}{r^{2}}=\cos 2 \theta
\end{aligned}
$$

This has no limit (along x axis and along $x=y$ give different values).

$$
\frac{x^{3}-y^{3}}{x^{2}+y^{2}}=\frac{r^{3} \cos ^{2} \theta-r^{3} \sin ^{2} \theta}{r^{2}}=r \cos 2 \theta \rightarrow 0 \quad \text { as } \quad r \rightarrow 0
$$

- $14.6 \# 10$

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\left(e^{y}\right)\left(\frac{1}{u}\right)+\left(e^{y}+x e^{y}+y e^{y}\right)(0) \\
& \frac{\partial z}{\partial v}=\left(e^{y}\right)(0)+\left(e^{y}+x e^{y}+y e^{y}\right)(1)
\end{aligned}
$$

- 14.6\#14 I would always use arctan and not $\tan ^{-1}$.

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\left(\frac{1}{1+\frac{x^{2}}{y^{2}}}\right)\left(\frac{1}{y}\right)(2 u)+\left(\frac{1}{1+\frac{x^{2}}{y^{2}}}\right)\left(-\frac{x}{y^{2}}\right)(2 u) \\
& \frac{\partial z}{\partial v}=\left(\frac{1}{1+\frac{x^{2}}{y^{2}}}\right)\left(\frac{1}{y}\right)(2 v)+\left(\frac{1}{1+\frac{x^{2}}{y^{2}}}\right)\left(-\frac{x}{y^{2}}\right)(-2 v)
\end{aligned}
$$

- SKEW LINES Find the minimum of $f(s, t)=$ the distance-squared between the points on the two lines $x=1 ; y=1 ; z=t$ and $x=3+s ; y=$ $0 ; z=-s$ using chapt 15 techniques, also find the points on the two lines nearest each other. Answer, the points are $(1,1,2)$ and $(1,0,2)$ and the distance is one.
- LAGRANGE Find the maximum and minimum values of $f(x, y, z)=$ $x+2 y+3 z$ subject to the two constraints $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$. Answer Max is $2+\frac{2}{3} \sqrt{3}$, min is $2-\frac{2}{3} \sqrt{3}$.
- TRIPLE INTEGRAL Change the order of integration of

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f d z d y d x
$$

in the orders $d x d y d z$ and $d y d z d x$. See region2.mws in the maple subdirectory.

$$
\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{y^{2}} f d x d y d z \quad \int_{0}^{1} \int_{0}^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f d y d z d x
$$

- EULER. Consider the vector field $\vec{F}=\langle-y-x / 10, x-y / 10\rangle$
A. Show $\vec{r}(t)=\left\langle e^{-t / 10} \cos t, e^{-t / 10} \sin t\right\rangle$ is a flow for \vec{F}
B. Use Euler's method to approximate the flow which starts at $(1,0)$ by completing a table that starts like the one below with as much accuracy has your TI-89 can give. [Check to see that you are in both radian mode and using the Euler method]. Do five steps of size $\Delta t=0.1$
Answers A. Compute $x^{\prime}(t)$ and $y^{\prime}(t)$ and plug them into the equation.
B. $\Delta t=0.1$ so we have

t	x	y	$x^{\prime}(t)$	$y^{\prime}(t)$	Δx	Δy
0	1	0	-0.1	1	-0.01	0.1
0.1	0.99	0.1	-0.199	0.98	-0.0199	0.099
0.2	0.9701	0.199	$?$	$?$	$?$	$?$
0.3	$?$	$?$	$?$	$?$	$?$	$?$
0.4	$?$	$?$	$?$	$?$	$?$	$?$
0.5	$?$	$?$	$?$	$?$	$?$	$?$

- 18.4\#20 $\pi a b$
- $19.3 \# 6 \pi \sqrt{6}$

