## Proofs about graphs which are almost trees.

The following statements are equivalent (for a simple graph $G$ ):
a. $G$ is a tree (For vertices $x$ and $y$ of $G$ there is a unique $x y$-path in $G$ ).
b. $G$ is connected and acyclic. (Acyclic means it has no cycles.)
c. $G$ is connected and $|E|=|V|-1$.
d. $G$ is acyclic and $|E|=|V|-1$.
e. $G$ is connected and each edge $e$ is a bridge. ( $e$ is a bridge or cut edge means $G-e$ is disconnected.) [This says a tree is a minimal connected graph.]
f. $G$ is acyclic and if $x, y \in V(G)$ and $e=x y \notin E(G)$ then $G+e$ has a cycle. [This says a tree is a maximal acyclic graph.]

1. Show the following statements are equivalent ( $G$ a simple graph):
a. $G$ is connected and has exactly one cycle.
b. $G$ is connected and $|E|=|V|$.
c. $G$ has an edge $e$ so that $G-e$ is connected and acyclic.
d. There is a tree $T$ and an edge $e \notin E(T)$ so that $G=T+e$.

The a, b, c and d above are also equvalent to e below (but you are not asked to prove this.)
e. $G$ is connected, but not a tree, and for vertices $x$ and $y$ of $G$ there are at most two simple $x y$-paths in $G$.
2. Show the following statements are equivalent ( $G$ a simple graph):
a. There is an edge $e \notin E(G)$ so that $G+e$ is a tree.
b. $G$ is acylic and $|E|=|V|-2$.
c. $G$ is acylic, disconnected and there is an edge so that $G+e$ is connected.
d. $G$ is the disjoint union of two trees. [ $G$ has two components both of which are trees.] And each of the items above implies 2e, but not conversely.
e. If $G$ is disconnected and for $x, y$ vertices of $G$ in different components, then for $e=x y, G+e$ is connected.

The following are from old tests.
4. Prove $G$ is a forest $\Longleftrightarrow$ every edge of $G$ is a cut edge.
5. Prove by induction (on the number of vertices), if $T$ is a tree, then $|V(T)|=|E(T)|+1$.
6. Prove if $G$ is acyclic and $|E(G)|=|V(G)|-2$, then there is an edge $e \in E(\bar{G})$ so that $G+e$ is a tree.
7. Using the formula $\sum_{v \in V(G)} \operatorname{deg} v=2|E(G)|$, or induction, or any other method, prove that a tree with a vertex of degree 3 has at least 3 vertices of degree 1. [Hint: the tree must have at least 4 vertices.]
8. Prove if $G$ is connected and $|E(G)|=|V(G)|$, then there is an edge $e \in E(G)$ so that $G-e$ is a tree.

