MAD 3104 Discrete Math 1
Test 3
29 Nov 1995
Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. For the binary tree to the right, list the vertices in:
A. Preorder.
B. Inorder.
C. Postorder.
2. Draw the binary tree.
A. BST for the data $60,10,80,20,50,70,40$.
B. For the expression $((a+b) *(r-s)+7) /(u * v-x / y)$.
3. Draw the binary tree.

A. With level-order vertices $1,2,3,5,6,10,13,27,54,55$.
B. The vertices in postorder are $B A F G D C E$ and the vertices in inorder are $B E F A C G D$.
4. For the digraph to the right.
A. Give the in-degree and out-degree of each vertex.
B. Write the adjacency matrix for the digraph.
5. Construct the binary tree. (Smaller weights to the left.)
A. The Optimal binary tree for the weights $10,12,13,16,17$ and 18.
B. Give the resulting code word for each weight.

6. What is the chromatic number of the following graphs?
A. K_{5} - the complete graph on 5 vertices.
B. The empty graph (empty of edges) with 3 isolated vertices.
C. $K_{3,3}$ - the utility graph.
D. Any non-trivial tree.
7. Give counterexamples. (In C and D be sure to label the edge e.)
A. Every tree has a vertex of degree 1.
B. A graph with $|E|=|V|-1$ is a tree.
C. In a graph G with $|E|=|V|$ any edge e in G will make $G-e$ a tree.
D. In a graph G with $|E|=|V|-2$ any edge e not in G will make $G+e$ a tree.
8. Prove: If e is an edge not in G so that $G+e$ is a tree, then G is acyclic and $|V(G)|-2=|E(G)|$
9. Prove: G is connected and $|E|=|V|$ then G has an edge e so that $G-e$ is a tree.
10. Prove by (stong) induction on the number of CYCLES: Every connected graph satisfies $|E| \geq|V|-1$.
