Show ALL work for credit; be neat; and use only ONE side of each page of paper.

1. Use De Morgan's and/or the distributive laws to simplify:
A. $\bar{A} \cap(A \cup B)$
B. $\overline{(A-B)} \cap A$
2. Give counterexamples to the statements below. The relation R is the one given by the digraph below.
A. R is reflexive.
C. R is symmetric.
D. R is anti-symmetric.
E. R is transitive.
3. Solve for m in Z_{13}. Write your answer so that $0 \leq m<13$.
A. $[5]+[12]=[m]$
B. $[5][9]=[\mathrm{m}]$
C. $[5][m]=[3]$

D. $[7]^{101}=[m]$
4. Construct a truth table for $(p \wedge q) \rightarrow(\sim p \vee q)$.
5.For each part, decide whether the logic is valid or invalid and draw a Venn diagram to support your answer.
A. If $x+2=x$, then x is blue. $x+2=x$. Therefore, x is blue.
B. If T is a rectangle, then T is a square. T is a square. Therefore, T is a rectangle.
5. Negate the following statements and re-write them so that words like "not" or "no" are not used.
A. For all triangles T, the $\operatorname{area}(T) \geq \operatorname{perimeter}(T)$.
B. For some integers x, x is odd and x^{2} is even.
6. Draw the digraph fot the relation R on the set $A=\{2,3,4,5,6\}$ where the relation R is defined by $a R b \Longleftrightarrow a=3$ or $b=5$.
7. Equivalent classes. For the given set A, the relation R is an equivalence relation, describe the the equivalence class $[p]$, for the given p.
A. A is the set of reals, $a R b \Longleftrightarrow a^{2}=b^{2}$, and $p=4$.
B. A is the points in the plane, $(a, b) R(c, d) \Longleftrightarrow a^{2}+b^{2}=c^{2}+d^{2}$, and $p=(3,4)$.
C. $A=\{1,2,3,4,5,6\}, a R b \Longleftrightarrow a=b$ or both $a \geq 3$ and $b \geq 3$, and $p=4$.
8. A is the set of reals and $a R b \Longleftrightarrow a+10 \leq b$.
A. Give counter-examples to show R is not reflexive and not symmetric.
B. Give proofs to show R is anti-symmetric and transitive.
9. Proof or disprove. Let A be the set of points in the plane and let R be the relation defined by $(a, b) R(c, d) \Longleftrightarrow|a-c| \leq|b-d|$.
A. R is reflexive.
B. R is symmetric.
C. R is anti-symmetric.
D. R is transitive.

Keep this sheet. Graded tests will be ready 1:30 Friday 22 Sep in 002B LOV.

