Relations

Problems: For the given A and R and each of the properties: A. reflexive, B. symmetric, C. anti-symmetric and D. transitive, decide if R has the property. If it has the property then prove it has that property or if it doesn't have the property then give a counterexample to show the property fails. (I.e. Prove or disprove.)

- 1. A is the set of real numbers and $aRb \iff a \leq b$.
- 2. A is the set of real numbers and $aRb \iff a < b$.
- 3. A is the set of real numbers and $aRb \iff 0 \le a b \le 2$.
- 4. A is the set of real numbers and $aRb \iff |a-b| < 2$.
- 5. A is the set of odd positive integers and $aRb \iff a \neq b$ and a evenly divides b.
- 6. A is the set of real numbers and $aRb \iff a^2 b^2 = 0$.
- 7. A is the set of positive integers and $aRb \iff a$ divides b.
- 8. A is the set of integers and $aRb \iff a-b$ is odd.
- 9. A is the set of positive integers and $aRb \iff a \equiv 1 \mod b$.
- 10. A is the set of integers and $aRb \iff a \cdot b$ is even.
- 11. A is the set of points in the plane and $(a, b)R(c, d) \iff (a c)^2 + (b d)^2 \le 5$.
- 12. A is the set of points in the plane and $(a, b)R(c, d) \iff a + b = c + d$.
- 13. A is the set of points in the plane and $(a, b)R(c, d) \iff |a b| = |c d|$.
- 14. A is the set of points in the plane and $(a, b)R(c, d) \iff a = c$.
- 15. A is the set of points in the plane and $(a, b)R(c, d) \iff a = d$.
- 16. A is the set of triangles in the plane and $tRs \iff$ triangle t has the same area as triangle s.
- 17. A is the set of triangles in the plane and $tRs \iff$ triangle t is similar to triangle s.
- 18. A is the set of triangles in the plane and $tRs \iff$ triangle t has either at least as much area as triangle s, or triangle t has at least as large perimeter as triangle s.
- 19. A is the set $\{1, 2, 3, \{1\}, \{1, 3\}, \{2\}\}$ and $aRb \iff a \in b$.
- 20. A is the set power set of $\{1, 2, 3\}$ and $aRb \iff a \subseteq b$.