## Relations

Problems: For the given $A$ and $R$ and each of the properties: A. reflexive, B. symmetric, C. anti-symmetric and D. transitive, decide if $R$ has the property. If it has the property then prove it has that property or if it doesn't have the property then give a counterexample to show the property fails. (I.e. Prove or disprove.)

1. $A$ is the set of real numbers and $a R b \Longleftrightarrow a \leq b$.
2. $A$ is the set of real numbers and $a R b \Longleftrightarrow a<b$.
3. $A$ is the set of real numbers and $a R b \Longleftrightarrow 0 \leq a-b \leq 2$.
4. $A$ is the set of real numbers and $a R b \Longleftrightarrow|a-b|<2$.
5. $A$ is the set of odd positive integers and $a R b \Longleftrightarrow a \neq b$ and $a$ evenly divides $b$.
6. $A$ is the set of real numbers and $a R b \Longleftrightarrow a^{2}-b^{2}=0$.
7. $A$ is the set of positive integers and $a R b \Longleftrightarrow a$ divides $b$.
8. $A$ is the set of integers and $a R b \Longleftrightarrow a-b$ is odd.
9. $A$ is the set of positive integers and $a R b \Longleftrightarrow a \equiv 1 \bmod b$.
10. $A$ is the set of integers and $a R b \Longleftrightarrow a \cdot b$ is even.
11. $A$ is the set of points in the plane and $(a, b) R(c, d) \Longleftrightarrow(a-c)^{2}+(b-d)^{2} \leq 5$.
12. $A$ is the set of points in the plane and $(a, b) R(c, d) \Longleftrightarrow a+b=c+d$.
13. $A$ is the set of points in the plane and $(a, b) R(c, d) \Longleftrightarrow|a-b|=|c-d|$.
14. $A$ is the set of points in the plane and $(a, b) R(c, d) \Longleftrightarrow a=c$.
15. $A$ is the set of points in the plane and $(a, b) R(c, d) \Longleftrightarrow a=d$.
16. $A$ is the set of triangles in the plane and $t R s \Longleftrightarrow$ triangle $t$ has the same area as triangle $s$.
17. $A$ is the set of triangles in the plane and $t R s \Longleftrightarrow$ triangle $t$ is similar to triangle $s$.
18. $A$ is the set of triangles in the plane and $t R s \Longleftrightarrow$ triangle $t$ has either at least as much area as triangle $s$, or triangle $t$ has at least as large perimeter as triangle $s$.
19. $A$ is the set $\{1,2,3,\{1\},\{1,3\},\{2\}\}$ and $a R b \Longleftrightarrow a \in b$.
20. $A$ is the set power set of $\{1,2,3\}$ and $a R b \Longleftrightarrow a \subseteq b$.
