Proofs: Contradiction and Induction

1. Prove by contradiction: A graph with 100 edges and 19 vertices has a vertex of degree at least 11.
2. Prove by contradiction:
A. Prove a graph with 35 edges and 16 vertices has a vertex of degree at least 5 .
B. Prove a graph with 45 edges and 24 vertices has a vertex of degree at most 3 .
3. Prove by contradiction:
A. Prove a graph with 40 edges and 25 vertices has a vertex of degree at least 4 .
B. Prove a graph with 50 edges and 20 vertices has a vertex of degree at most 5 .
4. Prove by contradiction:
A. Prove a graph with 41 edges and 20 vertices has a vertex of degree at least 5 .
B. Prove a graph with 49 edges and 25 vertices has a vertex of degree at most 3 .
5. Prove by induction (on n) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
6. Prove by induction that $\sum_{i=1}^{n}(2 i-1)=n^{2}$.
7. Prove by induction that $1+3+5+\cdots+(2 n-1)=n^{2}$.
8. Prove by induction: For each integer $n \geq 0,4^{n}>n^{2}$.
9. Prove by induction that $n!>2^{n}$ for $n \geq 4$.
10. Given $a_{0}=2, a_{1}=0$ and $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2$, prove by induction, for each integer $n \geq 0$, $a_{n}=6 \cdot 2^{n}-4 \cdot 3^{n}$.
11. Given $a_{0}=3, a_{1}=0$ and $a_{n+1}=6 a_{n}-8 a_{n-1}$ for $n \geq 1$, prove by induction, for each integer $n \geq 0$, $a_{n}=6 \cdot 2^{n}-3 \cdot 4^{n}$.
