Extra Problems

1. Each matrix A below can be considered a linear map from $\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)$ to itself. Compute the norm when $p=1,2$ and ∞
(a)

$$
A=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)
$$

(b)

$$
A=\left(\begin{array}{rr}
5 & 0 \\
0 & -3
\end{array}\right)
$$

(c)

$$
A=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

(d)

$$
A=\left(\begin{array}{rr}
2 & -1 \\
1 & 2
\end{array}\right)
$$

2. Suppose $1 \leq r<p, q \leq \infty$ with

$$
\frac{1}{r}=\frac{1}{p}+\frac{1}{q}
$$

show for sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ and functions f and g

$$
\begin{aligned}
\left\|\left(x_{n}\right)\left(y_{n}\right)\right\|_{r} & \leq\left\|\left(x_{n}\right)\right\|_{p}\left\|\left(y_{n}\right)\right\|_{q} \\
\|f(t) g(t)\|_{r} & \leq\|f(t)\|_{p}\|g(t)\|_{q}
\end{aligned}
$$

3. Let $\alpha>0$
(a) For what values of p is the sequence $\left(1 / n^{\alpha}\right) \in \ell_{p}$
(b) For what values of p is the function $f(x)=1 / x^{\alpha} \in L_{p}([0,1])$
(c) For what values of r is $L_{p}(\mathbb{R}) \cap L_{q}(\mathbb{R}) \subset L_{r}(\mathbb{R})$. Hint write $f=g+h$ where

$$
g=\left\{\begin{array}{rc}
f(x) & |f(x)| \geq 1 \\
0 & \text { otherwise }
\end{array} \quad h=\left\{\begin{aligned}
f(x) & |f(x)| \leq 1 \\
0 & \text { otherwise }
\end{aligned}\right.\right.
$$

4. If X is a normed linear space and for any A satisfying:

$$
\{x:\|x\|<1\} \subset A \subset\{x:\|x\| \leq 1\}
$$

and defining

$$
p(x)=\inf \{\lambda>0: x \in \lambda A\}
$$

then for $x \in X, p(x)=\|x\|$.
5. Let $T: L_{2}\left([0,1] \rightarrow L_{2}([0,1]\right.$ be the operator

$$
(T f)(t)=t f(t)
$$

. Show T is self-adjoint and compute its norm. Consider the sequence

$$
f_{n}(t)=\left\{\begin{array}{rc}
\sqrt{n} & 1-\frac{1}{n} \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Show $\left\|f_{n}\right\|_{2}=1$ and $\left\|T f_{n}-f_{n}\right\|_{2} \rightarrow 0$. but 1 is not an eigenvalue of T. Some authors would say, 1 is in the approximate spectrum. Why does $\left(f_{n}\right)$ has no convergent subsequence?

