Extra Problems

- 1. Each matrix A below can be considered a linear map from $(\mathbb{R}^2, \|\cdot\|_p)$ to itself. Compute the norm when p = 1, 2 and ∞
 - (a) $A = \left(\begin{array}{rr} 1 & -1 \\ 1 & 1 \end{array}\right)$ (b) $A = \left(\begin{array}{cc} 5 & 0\\ 0 & -3 \end{array}\right)$ (c) $A = \left(\begin{array}{rrr} 1 & -1 \\ -1 & 1 \end{array}\right)$ (d) $A = \left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right)$
- 2. Suppose $1 \le r < p, q \le \infty$ with

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$$

show for sequences (x_n) and (y_n) and functions f and g

$$\||(x_n)(y_n)|\|_r \le \|(x_n)\|_p\|(y_n)\|_q$$
$$\||f(t)g(t)|\|_r \le \|f(t)\|_p\|g(t)\|_q$$

3. Let $\alpha > 0$

- (a) For what values of p is the sequence $(1/n^{\alpha}) \in \ell_p$
- (b) For what values of p is the function $f(x) = 1/x^{\alpha} \in L_p([0, 1])$
- (c) For what values of r is $L_p(\mathbb{R}) \cap L_q(\mathbb{R}) \subset L_r(\mathbb{R})$. Hint write f = g + hwhere

$$g = \begin{cases} f(x) & |f(x)| \ge 1\\ 0 & \text{otherwise} \end{cases} \qquad h = \begin{cases} f(x) & |f(x)| \le 1\\ 0 & \text{otherwise} \end{cases}$$

4. If X is a normed linear space and for any A satisfying:

$$\{x : \|x\| < 1\} \subset A \subset \{x : \|x\| \le 1\}$$

and defining

$$p(x) = \inf\{\lambda > 0 : x \in \lambda A\}$$

then for $x \in X$, p(x) = ||x||.

5. Let $T: L_2([0,1] \to L_2([0,1])$ be the operator

$$(Tf)(t) = tf(t)$$

. Show T is self-adjoint and compute its norm. Consider the sequence

$$f_n(t) = \begin{cases} \sqrt{n} & 1 - \frac{1}{n} \le x\\ 0 & \text{otherwise} \end{cases}$$

Show $||f_n||_2 = 1$ and $||Tf_n - f_n||_2 \to 0$. but 1 is not an eigenvalue of T. Some authors would say, 1 is in the approximate spectrum. Why does (f_n) has no convergent subsequence?