1. True or False and a brief reason why or why not. Let A be an $n \times n$ matrix, I the $n \times n$ identity matrix and let B and C be the matrices given below.

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) If $A-\lambda I$ has a row of zeros, then λ is an eigenvalue of A
(b) An eigenvector can be zero, but an eigenvalue must be non-zero.
(c) The vector $X=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$ is an eigenvector for C
(d) If $Y=\left[\begin{array}{llllll}0 & 1 & 0 & -1 & 0 & 0\end{array}\right]^{T}$, then $C * Y=-Y$.
(e) B has a characteristic polynomial $p(\lambda)$ which has only the repeated root 1 three times.
(f) If A is invertible then $\operatorname{det}(A)=0$
(g) If $\operatorname{rref}(A)$ is the reduce row echelon form of A, then $\operatorname{det}(A)=\operatorname{det}(\operatorname{rref}(A))$.
(h) The column vectors of B are a dependent set.
(i) The vector $X=\left[\begin{array}{lll}0 & -1 & 3\end{array}\right]^{T}$ is a linear combination of the column vectors of B.
(j) If $A X=0$ has a solution, then A is singular.
2. True or False and a brief reason why or why not. Let A be an $n \times n$ matrix, I the $n \times n$ identity matrix and let B and C be the matrices given below.

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{rrrrrr}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 10 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.1
\end{array}\right]
$$

(a) $\operatorname{det}(C)=1$
(b) If $X=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0\end{array}\right]^{T}$, then $C * X=2 X$.
(c) The characteristic polynomial of A is $p(\lambda)=\operatorname{det}(A-\lambda I)$
(d) The eigenvalues of A are the coefficients of the characteristic polynomial of A.
(e) The numbers $\operatorname{det}(A)$ and $\operatorname{det}(\operatorname{rref}(A))$ are either both zero or both non-zero.
(f) $B^{-1}=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$
(g) If X is an eigenvector for the invertible matrix A, then X is also an eigenvector for A^{-1}.
(h) If λ is an eigenvalue for A, then λ is also an eigenvalue for $-A$.
(i) The column vectors of C are linearly dependent.
(j) If $A X=0$ has a non-zero solution, then A is singular.
3. True or False and a brief reason why or why not. Let A be an $n \times n$ matrix, I the $n \times n$ identity matrix and let B and C be the matrices given below.

$$
B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) $\operatorname{det}(C)=1$
(b) If $X=\left[\begin{array}{llllll}0 & -1 & 0 & 0 & 1 & 0\end{array}\right]^{T}$, then X is an eigenvector for C.
(c) If $X=\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 1\end{array}\right]^{T}$, then X is an eigenvector for C.
(d) If the matrix product of $B^{-1} D=\left[\begin{array}{rrr}-5 & -5 & -5 \\ 0 & 4 & 5 \\ 6 & 7 & 8\end{array}\right]$ then $D=\left[\begin{array}{rrr}-5 & -5 & -10 \\ 0 & 4 & 5 \\ 6 & 7 & 14\end{array}\right]$. (Hint: Don't compute B^{-1}; instead use $\left(B^{-1}\right)^{-1}=B$)
(e) If $p(s)=\operatorname{det}(A-s I)$ is the characteristic polynomial of the matrix A, then $\operatorname{det}(A)$ is the y-intercept of the graph of $y=p(x)$
(f) The characteric polynomial of $\left[\begin{array}{rr}5 & -5 \\ 4 & 5\end{array}\right]$ is $p(s)=s^{2}-10 s+5$
(g) If X is an eigenvector for the invertible matrix A, then X is also an eigenvector for A^{-1}.
(h) If λ is an eigenvalue for A, then λ^{2} is an eigenvalue for A^{2}.
(i) The column vectors of C are linearly dependent.
(j) The matrix product C^{2} is I

