1. True or False and a brief reason why or why not. Let A, B, C and D be the matrices given below.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 7 \\
13 & 0 & 0 \\
0 & -3 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

(a) The matrix equation $A X=\left[\begin{array}{l}21 \\ 65 \\ 33\end{array}\right]$ has $X=\left[\begin{array}{c}5 \\ -11 \\ 3\end{array}\right]$ as a solution
(b) Using scilab notation on matrix $B, 5 * B(2,:)-3 * B(1,:)$ is $\left[\begin{array}{lll}-3 & 5 & 2\end{array}\right]$
(c) The matrix equation $B X=0$ has ∞-many solutions
(d) The determinate of matrix C is 1 .
(e) The inverse of A is $\left[\begin{array}{ccc}0 & 1 / 13 & 0 \\ 0 & 0 & -1 / 3 \\ 1 / 7 & 0 & 0\end{array}\right]$
(f) One can compute $B+C$ and its entry in the first row and first column is a 2 .
(g) Using scilab, the command $x=3: 5: 13$ will output
$\mathrm{x}=$ $\begin{array}{lllll}3 & 5 & 7 & 911 & 13\end{array}$
(h) If the $n \times n$ matrix M has a column of zeros then $\operatorname{det}(M)=0$
(i) The matrix D can have $\operatorname{det}(D)=0$
(j) If 5×5 matrix E is obtained from the 5×5 matrix F by interchanging row 3 with row 5 , then $\operatorname{det}(E)=\operatorname{det}(F)$
2. True or False and a brief reason why or why not. Let $A B$ and C be the matrices given below.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 3 \\
5 & 0 & 0 \\
0 & -11 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) The matrix equation $A X=\left[\begin{array}{c}9 \\ 25 \\ 121\end{array}\right]$ has $X=\left[\begin{array}{c}5 \\ -11 \\ 3\end{array}\right]$ as a solution
(b) The matrix B is in reduced row echelon form
(c) The matrix equation $C X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has ∞-many solutions
(d) The determinate of matrix A is 165 .
(e) The matrix product $B^{2}=B$
(f) The row rank of matrix B is 3
(g) If 5×5 matrix E is obtained from the 5×5 matrix F by any elementary row operation, then $\operatorname{det}(E)=\operatorname{det}(F)$
(h) If $a d-b c=1$ and $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(i) Using scilab notation on matrix $B, 5 * B(2,:)-3 * B(1,:)=\left[\begin{array}{ccc}5 & -3 & 2\end{array}\right]$
(j) If the $n \times n$ matrix M has $\operatorname{det}(M)=0$ then M is invertible
3. True or False and a brief reason why or why not. Let $A B$ and C be the matrices given below.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
6 & -3 & 3 \\
10 & -5 & 5
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) The matrix equation $A X=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has $X=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ as a solution
(b) The matrix B is in reduced row echelon form
(c) The matrix equation $C X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has ∞-many solutions
(d) The determinate of matrix A is 15 .
(e) The matrix product $B^{2}=B+\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(f) The row rank of matrix B is 3
(g) If the matrix C was the augmented matrix from a system of equations, then that system of equations would have ∞-many solutions.
(h) If X and Y are any 5×5 matrices, then $X Y \neq Y X$
(i) Using scilab notation on matrix $A, 5 * A(2,:)-3 * A(3,:)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
(j) The transpose of matrix B, is the same as the matrix B.

