Functional Analysis Problems

Steven Bellenot

September 21, 2009

Easy Problems

1. If A is and $n \times n$ matrix with eigenvalue λ and eigenvector x (so that $A x=\lambda x$) and $p(s)$ is polynomial $c_{0}+c_{1} s+\cdots+c_{k} s^{k}$, then the matrix $p(A)$ has eigenvalue $p(\lambda)$ and eigenvector x. (Spectra Mapping I)
2. If A and B are $n \times n$ matrices both with the same eigenvectors $x_{1}, \ldots x_{n}$, but the eigenvalues for A are are the distinct $\lambda_{1}, \ldots \lambda_{n}$ and the eigenvalues for B are $\mu_{1}, \ldots \mu_{n}$. Show there is a polynomial $p(s)$ so that $p\left(\lambda_{i}\right)=\mu_{i}$ for $1 \leq i \leq n$. In general, what is the minimal degree of p ? Show $p(A)=B$. (Spectra Mapping II)
3. Let A is a 2×2 matrix with eigenvectors x_{1}, x_{2} and eigenvalues $\lambda_{1} \neq \lambda_{2}$. Suppose B is a 2×2 matrix so that $A B=B A$, show x_{1}, x_{2} are also eigenvectors for B and there is a polynomial $p(s)$, so that $p(A)=B$.
4. Let $S: \ell^{2} \rightarrow \ell^{2}$ be the shift operator given by $S\left(\left(\alpha_{i}\right)_{i \in \mathbb{N}}\right)=\left(\beta_{i}\right)_{i \in \mathbb{N}}$ where $\beta_{1}=0$ and $\beta_{i+1}=\alpha_{i}$ for $i \geq 1$. Show S is not onto, but is one to one, in fact show S is an into isometry, which means $\|S x\|=\|x\|$ for all vectors x.
5. Let $T: \ell^{2} \rightarrow \ell^{2}$ be the backwards shift operator given by $T\left(\left(\alpha_{i}\right)_{i \in \mathbb{N}}\right)=\left(\beta_{i}\right)_{i \in \mathbb{N}}$ where $\beta_{i}=\alpha_{i+1}$ for $i \geq 1$. Show T is not one to one, and it has a one dimensional kernel $\operatorname{ker} T=\{x \mid T x=0\}$ but is onto. Futhermore show $T S$ is the identity, but $S T$ is not.
6. Let $D: \ell^{2} \rightarrow \ell^{2}$ be the diagonal operator given by $D\left(\left(\alpha_{i}\right)_{i \in \mathbb{N}}\right)=\left(\beta_{i}\right)_{i \in \mathbb{N}}$ where $\beta_{i}=\frac{\alpha_{i}}{i}$ for $i \geq 1$. Show D is not onto, but is one to one.
7. Let $x, y \in H$ a Hilbert space, show $f(t)=\langle x+t y, x+t y\rangle$ is a differentiable function from $\mathbb{R} \rightarrow \mathbb{R}$ with a unique minimum at $t=s$ so that $x+s y \perp y$. (This is the point nearest the origin on a line, which is a translate of a one dimensional subspace.)
8. If N is a closed subspace of a Hibert space H and $x \notin N$, there there is a $y \in N^{\perp}$ so that $\langle y, x\rangle \neq 0$; (so y "separates" x from N).
9. Suppose $\left\{e_{n}\right\}$ is an orthonormal basis for a Hilbert space H. Show no subsequence of $\left\{e_{n}\right\}$ converges (and hence the unit ball $U=\{x \in H \mid\|x\| \leq 1\}$ is not compact); but for each $x \in H,<x, e_{n}>\rightarrow 0$ as $n \rightarrow \infty$ (this is called weak converence to 0 .)
10. If A is an bounded linear operator on a Hilbert space, that $(\text { image } A)^{\perp}=\operatorname{ker} A^{*}$ and $\left(\text { image } A^{*}\right)^{\perp}=$ $\operatorname{ker} A$.
11. Show if V is an operator, so that $\|V x\|=\|x\|$ then $\langle V x, V y\rangle=\langle x, y\rangle, V^{*} V=I$ and $V V^{*}$ is a self adjoint projection. Find $S^{*}, S S^{*}$, and T^{*} for the shift operators in Problem 4. Define an operator $T_{2} \neq T$ that is also a left inverse for S.
12. Let $m(x)$ be a piecewise continuous function. for $0 \leq x \leq 1$ and let A be the operator on $L^{2}(0,1)$:

$$
(A f)(x)=m(x) f(x)
$$

Show $\|A\|=\|m(x)\|_{\infty}$ is the sup of $|m(x)|$ except for possibility finitely many x. When is A self-adjoint? unitary? a self-adjoint projection?

More challenging

1. Show the parallelogram law characterizes norms that come from inner products. (Hint: do the real case first.)
2. Show ℓ^{2} has an uncountable linearly independent subset. (Hint1: find an uncountable collection \mathscr{C} of infinite subsets of \mathbb{N} so that if $A \neq B, A, B \in \mathscr{C}$, then $A \cap B$ is a finite set.) (Hint2: There are couple of ways to find \mathscr{C}. For each real r find a rational sequence $\left(q_{i}\right)$ so that $q_{i} \rightarrow r$. Or for each θ, find all points $\{(n, m)|n, m \in \mathbb{Z},|n \sin \theta-m \cos \theta| \leq 1\}$ which are the integer lattice points, (n, m), within one unit of the line through the origin with slope $\tan \theta$.)
3. Suppose H is a non-separable Hilbert space, show there is some uncountable set Γ and an orthonormal set $\left\{e_{\gamma} \mid \gamma \in \Gamma\right\}$ with dense linear span in H so that $x \in H$, if and only if $\sum\left|\left\langle e_{\gamma}, x\right\rangle\right|^{2}<\infty$ and $x=\sum\left\langle e_{\gamma}, x\right\rangle e_{\gamma}$. (Hint: the uncountable sum of positive numbers is easy to define as the sup of all finite partial sums. If the uncountable sum is finite, then at most a countable number are non-zero, and so the sum reduces to the usual sum of a sequence.)
4. More general idempotent (projection like) operators. Let $P^{2}=P$ be a bounded linear operator on Hilbert space. Let $X=\{x \mid P x=x\}$ and $Y=\{x \mid P x=0\}$ and let $\Delta=\inf \{\|x-y\| \mid\|x\|=\|y\|=1, x \in$ $X, y \in Y\}$ Show $\|P\|=1 / \Delta$.
