Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Nothing written on this page will be graded;

1. Match the PDE $(\mathrm{I})-(\mathrm{V})$ to its characteristics $(\mathrm{A})-(\mathrm{H}):(\mathrm{A}, \mathrm{B}$ are elliptic; C, D parabolic and $\mathrm{E}-\mathrm{H}$ hyperbolic.)
Equation \quad Characteristics Φ and Ψ
I. $\quad u_{x x}+2 u_{x y}=0$
II. $\quad-u_{x x}+2 u_{x y}=0$
III. $\quad u_{x x}+2 u_{x y}+2 u_{y y}=0$
IV. $\quad u_{x x}-2 u_{x y}+u_{y y}=0$
V. $\quad-2 u_{x y}+u_{y y}=0$
A. $y+x \pm i x$
B. $y-x \pm i x$
C. $y+x \pm 0$
D. $y-x \pm 0$
E. $y+x \pm x$
F. $y-x \pm x$
G. $x+y \pm y$
H. $x-y \pm y$
2. Single traveling wave: consider the initial value problem (IVP):

$$
c^{2} u_{x x}=u_{t t} ; u(x, 0)=f(x) ; u_{t}(x, 0)=g(x)
$$

(a) Show $w(x, t)=h(x-c t)$ is a solution to $c^{2} u_{x x}=u_{t t}$.
(b) Compute the initial values of the IVP, the $f(x)$ and $g(x)$, for the solution given in Part 2a.
(c) Write D'Alembert's solution to the IVP.
(d) Compute the integral term in Part 2c using functions in 2b.
(e) Suppose $h(x)$ looks like the graph below and the boundary conditions at the endpoints $x=0$ and $x=L$ are the usual fixed endpoints $u(0, t)=u(L, t)=0$. Will the wave bounce back from the endpoint (which it must, because of conservation of energy) above or below the x-axis?

3. Find the solution to the one dimensional heat equation (with insulated ends) ($c^{2}=L=1$): namely

$$
u_{x x}=u_{t} ; \quad u_{x}(0, t)=u_{x}(1, t)=0 ; \quad u(x, 0)=1-2 x
$$

4. True or False and a brief reason why or why not. The following trig identities might be useful

$$
\begin{aligned}
\sin ^{3} x & =\frac{1}{4}(3 \sin x-\sin 3 x) \\
\cos ^{3} x & =\frac{1}{4}(3 \cos x+\cos 3 x)
\end{aligned}
$$

(a) The first step to solving the PDE $u_{x y}+u_{y}+x=0$ like an ODE is to use $p=u_{x}$.
(b) To convert the PDE $u_{x}=4 y u$ into an ODE in $\frac{d w}{d t}$ is the transformation $u \rightarrow w ; y \rightarrow t$.
(c) Any steady state solutions of the heat equation $c^{2} u_{x x}=u_{t}$ has the form $A x+B$
(d) A semi-infinite laterally insulated rod starts at the origin $x=0$ and continues along the positive x-axis. The rod has been kept at a temperature of 100 for a long time. A time $t=0$, the rod at $x=0$ is suddenly changed to a temperature of 0 and kept at 0 . A BVP modelling this might require some conditional at $x=\infty$, but it needs to include

$$
c^{2} u_{x x}=u_{t} ; u(0, t)=0 ; u(x, 0)=100
$$

(e) The solutions of $u_{x}+u_{y}=0$ of the form $X(x) Y(y)$ are $u(x, y)=\exp (k(x+y))$
(f) If $f(x)=\sum_{n=1}^{N} b_{n} \sin n x$, then the general solution to $100 y^{\prime \prime}+y=f(x)$ is

$$
y(x)=A \cos \frac{x}{10}+B \sin \frac{x}{10}+\sum_{n=1}^{N} \frac{b_{n}}{1-100 n^{2}} \sin n x
$$

(g) If one of the two functions $f(x)$ and $g(x)$ is odd and the other is even and $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) d x=0$, then $g(x)$ is odd and $f(x)$ is even.
(h) If $\xi=2 x+3 y$ and $\eta=3 x-2 y$, then $u_{x y}=6 u_{\xi \xi}+5 u_{\xi \eta}-6 u_{\eta \eta}$
(i) The solution to the wave equation

$$
u_{x x}=u_{t t} ; u(0, t)=u(\pi, t)=0 ; u(x, 0)=4 \sin ^{3} x ; u_{t}(x, 0)=0
$$

is $u(x, t)=3 \sin x \cos t-\sin 3 x \cos 3 t$
(j) The PDE $u_{x x}-u_{x}+u=\sin (x y u)$ is linear.

