MAP 3306 eMath2

Test 2

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Nothing written on this page will be graded;

1. Match the PDE (I) – (V) to its characteristics (A) – (H): (A, B are elliptic; C, D parabolic and E– H hyperbolic.)

Equation		Characteristics Φ and Ψ
Ι.	$u_{xx} + 2u_{xy} = 0$	A. $y + x \pm ix$
II.	$-u_{xx} + 2u_{xy} = 0$	B. $y - x \pm ix$
III.	$u_{xx} + 2u_{xy} + 2u_{yy} = 0$	C. $y + x \pm 0$
IV.	$u_{xx} - 2u_{xy} + u_{yy} = 0$	D. $y - x \pm 0$
V.	$-2u_{xy}+u_{yy}=0$	E. $y + x \pm x$
		F. $y - x \pm x$
		G. $x + y \pm y$
		H. $x - y \pm y$

2. Single traveling wave: consider the initial value problem (IVP):

$$c^{2}u_{xx} = u_{tt}; \ u(x,0) = f(x); \ u_{t}(x,0) = g(x)$$

- (a) Show w(x,t) = h(x ct) is a solution to $c^2 u_{xx} = u_{tt}$.
- (b) Compute the initial values of the IVP, the f(x) and g(x), for the solution given in Part 2a.
- (c) Write D'Alembert's solution to the IVP.
- (d) Compute the integral term in Part 2c using functions in 2b.
- (e) Suppose h(x) looks like the graph below and the boundary conditions at the endpoints x = 0 and x = L are the usual fixed endpoints u(0,t) = u(L,t) = 0. Will the wave bounce back from the endpoint (which it must, because of conservation of energy) above or below the x-axis?

3. Find the solution to the one dimensional heat equation (with insulated ends) $(c^2 = L = 1)$: namely

 $u_{xx} = u_t; \quad u_x(0,t) = u_x(1,t) = 0; \quad u(x,0) = 1 - 2x$

There is more test on the other side.

4. True or False and a brief reason why or why not. The following trig identities might be useful

$$\sin^3 x = \frac{1}{4} (3\sin x - \sin 3x)$$
$$\cos^3 x = \frac{1}{4} (3\cos x + \cos 3x)$$

- (a) The first step to solving the PDE $u_{xy} + u_y + x = 0$ like an ODE is to use $p = u_x$.
- (b) To convert the PDE $u_x = 4yu$ into an ODE in $\frac{dw}{dt}$ is the transformation $u \to w$; $y \to t$.
- (c) Any steady state solutions of the heat equation $c^2 u_{xx} = u_t$ has the form Ax + B
- (d) A semi-infinite laterally insulated rod starts at the origin x = 0 and continues along the positive x-axis. The rod has been kept at a temperature of 100 for a long time. A time t = 0, the rod at x = 0 is suddenly changed to a temperature of 0 and kept at 0. A BVP modelling this might require some conditional at $x = \infty$, but it needs to include

$$c^{2}u_{xx} = u_{t}; \ u(0,t) = 0; \ u(x,0) = 100$$

- (e) The solutions of $u_x + u_y = 0$ of the form X(x)Y(y) are $u(x, y) = \exp(k(x+y))$
- (f) If $f(x) = \sum_{n=1}^{N} b_n \sin nx$, then the general solution to 100y'' + y = f(x) is

$$y(x) = A\cos\frac{x}{10} + B\sin\frac{x}{10} + \sum_{n=1}^{N} \frac{b_n}{1 - 100n^2}\sin nx$$

- (g) If one of the two functions f(x) and g(x) is odd and the other is even and $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) dx = 0$, then g(x) is odd and f(x) is even.
- (h) If $\xi = 2x + 3y$ and $\eta = 3x 2y$, then $u_{xy} = 6u_{\xi\xi} + 5u_{\xi\eta} 6u_{\eta\eta}$
- (i) The solution to the wave equation

$$u_{xx} = u_{tt}; \ u(0,t) = u(\pi,t) = 0; \ u(x,0) = 4\sin^3 x; \ u_t(x,0) = 0$$

is $u(x,t) = 3\sin x \cos t - \sin 3x \cos 3t$

(j) The PDE $u_{xx} - u_x + u = \sin(xyu)$ is linear.