Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Nothing written on this page will be graded;

1. Match the function $(\mathrm{A})-(\mathrm{E})$ to its Fourier series $(\mathrm{I})-(\mathrm{V})$:
A. $f(x)=\frac{\pi^{2}}{4}(1-2|x|) \quad(-1<x<1)$
I. $f(x)=\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}-\frac{\sin 5 x}{5^{3}}+\cdots$
B. $f(x)=\left\{\begin{array}{rc}\frac{\pi}{4} & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ -\frac{\pi}{4} & \frac{\pi}{2}<x<\frac{3 \pi}{2}\end{array}\right.$
II. $f(x)=\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\cdots$
C. $f(x)=\frac{x}{2} \quad(-\pi<x<\pi)$
III. $f(x)=\frac{\cos \pi x}{1^{2}}+\frac{\cos 3 \pi x}{3^{2}}+\frac{\cos 5 \pi x}{5^{2}}+\cdots$
D. $f(x)=\frac{\pi}{4}|x| \quad(-\pi<x<\pi)$
IV. $f(x)=\frac{\cos x}{1}-\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\cdots$
E. $f(x)=\left\{\begin{array}{cr}\frac{\pi}{8} x(\pi-x) & 0<x<\pi \\ \frac{\pi}{8} x(\pi+x) & -\pi<x<0\end{array}\right.$
V. $f(x)=\frac{\pi^{2}}{8}-\frac{\cos x}{1^{2}}-\frac{\cos 3 x}{3^{2}}-\frac{\cos 5 x}{5^{5}}+\cdots$
2. Find the general solution to the PDE $u_{x x}=4 y^{2} u$ given that $u=u(x, y)$ is function of two variables.
3. Find the Fourier series of the function

$$
f(x)= \begin{cases}\pi-2 x & 0<x<\pi \\ \pi+2 x & -\pi<x<0\end{cases}
$$

4. True or False and a brief reason why or why not. The following trig identities might be useful

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\cos ^{3} x & =\frac{1}{4}(\cos 3 x+3 \cos x)
\end{aligned}
$$

(a) For integers $n, e^{-i n \pi / 2}=i^{n}$
(b) When $n \neq 0, \int e^{i x / n} d x=-i n e^{i x / n}+C$
(c) The best trig poly approx with $N=2$ for $f(x)=\cos ^{3} x$ is $\frac{3}{4} \cos x$
(d) Parseval's identity applied to $\cos ^{3} x$ will imply

$$
\int_{0}^{\pi} \cos ^{6} x d x=\frac{5 \pi}{16}
$$

(e) The fundamental period of $\sin (n \pi x / L)$ is L / n
(f) If $f(x)$ has Fourier series $\sum n^{-2} \cos n x$, then $g(x)=f(x+\pi)$ has Fourier series $\sum(-1)^{n} n^{-2} \cos n x$
(g) Every function with Fourier series $\sum n^{-2} \cos n x$ is continuous.
(h) If $\lim _{x \rightarrow 0^{-}} f(x)=A<B=\lim _{x \rightarrow 0^{+}} f(x)$, then $f(x)$ cannot be piecewise smooth.
(i) $u(x, y)=\exp (x y)$ is a solution to $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=0$
(j) The second order PDE $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=\sin \left(x^{2}\right)$ is linear.

