Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Nothing written on this page will be graded;

1. Match the function (A) – (E) to its Fourier series (I) – (V):

- 2. Find the general solution to the PDE $u_{xx} = 4y^2u$ given that u = u(x,y) is function of two variables.
- 3. Find the Fourier series of the function

$$f(x) = \begin{cases} \pi - 2x & 0 < x < \pi \\ \pi + 2x & -\pi < x < 0 \end{cases}$$

4. True or False and a brief reason why or why not. The following trig identities might be useful

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$
$$\cos^3 x = \frac{1}{4}(\cos 3x + 3\cos x)$$

- (a) For integers n, $e^{-in\pi/2} = i^n$
- (b) When $n \neq 0$, $\int e^{ix/n} dx = -ine^{ix/n} + C$
- (c) The best trig poly approx with N=2 for $f(x)=\cos^3 x$ is $\frac{3}{4}\cos x$
- (d) Parseval's identity applied to $\cos^3 x$ will imply

$$\int_0^\pi \cos^6 x \, dx = \frac{5\pi}{16}$$

- (e) The fundamental period of $\sin(n\pi x/L)$ is L/n
- (f) If f(x) has Fourier series $\sum n^{-2} \cos nx$, then $g(x) = f(x+\pi)$ has Fourier series $\sum (-1)^n n^{-2} \cos nx$
- (g) Every function with Fourier series $\sum n^{-2} \cos nx$ is continuous.
- (h) If $\lim_{x\to 0^-} f(x) = A < B = \lim_{x\to 0^+} f(x)$, then f(x) cannot be piecewise smooth.
- (i) $u(x,y) = \exp(xy)$ is a solution to $x^2u_{xx} 2xyu_{xy} + y^2u_{yy} = 0$
- (j) The second order PDE $x^2u_{xx} 2xyu_{xy} + y^2u_{yy} = \sin(x^2)$ is linear.