MAP 3306 eMath2

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Nothing written on this page will be graded;

1. Match each fuction (I–VI) to all the ODE's (A–F) it solves:

I.
$$y = e^x$$
 II. $y = e^{-x}$ III. $y = \sin x$ IV. $y = \sinh x$ V. $y = xe^x$ VI. $y = e^{-2x}$

$$y'' + y = 0 \quad A$$

$$y'' - y = 0 \quad B$$

$$y'' - y' = 0 \quad C$$

$$y'' - y' + 2y = 0 \quad D$$

$$y'' - 2y' + y = 0 \quad E$$

$$y' + y = 0 \quad F$$
exting $u(x, y)$ can also be considered a function of the polar coordinates (x, θ) via $x = 0$

2. The function u(x, y) can also be considered a function of the polar coordinates (r, θ) via $x = r \cos \theta$ and $y = r \sin \theta$. Using the chain rule once to find $\frac{\partial u}{\partial r} = u_r$ gives

$$u_r = u_x x_r + u_y y_r = u_x \cos \theta + u_y \sin \theta$$

and u_r is expressed in terms of just u_x and u_y . Use the chain rule again to find the $u_{r\theta}$ in terms of $u_{xx}, u_{xy}, u_{yy}, u_x$ and/or u_y . Hint u

- 3. Find the general solution to $y'' y' + 6y = e^x$
- 4. True or False and a brief reason why or why not.
 - (a) $\int \cos x \, dx = -\sin x + C$ and $\int \sin x \, dx = \cos x + C$
 - (b) $\int_{-\pi}^{\pi} \sin(x + x^3 + x^5) x \cos(\sin(x)) dx = 0$
 - (c) The trigonometric functions $\sin 2x$, $\cos 2x$, and $\tan x$ all have fundamental period π .
 - (d) The following are trig identities $\sin(x+y) = \sin x \cos y + \cos x \sin y$ and $\cos(x+y) = \cos x \cos y + \sin x \sin y$
 - (e) $e^{i\theta} = \sin\theta + i\cos\theta$
 - (f) The ODE $y'' + y' 3y = \sin y$ is linear.
 - (g) The fuction $\mu = x$ is the integrating factor needed for the ODE $y' + y/x = \sin x$.
 - (h) The values r for which $y = x^r$ is a solution of $x^2y'' 2xy' + 2y = 0$ are r = 1 and r = 2.
 - (i) $u(x,t) = e^{-t} \sin 5x$ is a solution to the PDE $u_{xx} = 25u_t$
 - (j) If u(x,y) = f(2x 3y) then $u_x = 2f(2x 3y)$

