Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Nothing written on this page will be graded;

1. Match each fuction ($\mathrm{I}-\mathrm{VI}$) to all the ODE's ($\mathrm{A}-\mathrm{F}$) it solves:

$$
\begin{array}{rlll}
I . y=e^{x} \quad I I . y=e^{-x} \quad \text { III. } y=\sin x \quad I V . y=\sinh x & V . y=x e^{x} \quad \text { VI. } y=e^{-2 x} \\
y^{\prime \prime}+y=0 & A \\
y^{\prime \prime}-y=0 & B \\
y^{\prime \prime}-y^{\prime}=0 & C \\
y^{\prime \prime}-y^{\prime}+2 y=0 & D \\
y^{\prime \prime}-2 y^{\prime}+y=0 & E \\
y^{\prime}+y=0 & F
\end{array}
$$

2. The function $u(x, y)$ can also be considered a function of the polar coordinates (r, θ) via $x=r \cos \theta$ and $y=r \sin \theta$. Using the chain rule once to find $\frac{\partial u}{\partial r}=u_{r}$ gives

$$
u_{r}=u_{x} x_{r}+u_{y} y_{r}=u_{x} \cos \theta+u_{y} \sin \theta
$$

and u_{r} is expressed in terms of just u_{x} and u_{y}. Use the chain rule again to find the $u_{r \theta}$ in terms of $u_{x x}, u_{x y}, u_{y y}, u_{x}$ and/or u_{y}.

Hint

3. Find the general solution to $y^{\prime \prime}-y^{\prime}+6 y=e^{x}$
4. True or False and a brief reason why or why not.
(a) $\int \cos x d x=-\sin x+C$ and $\int \sin x d x=\cos x+C$
(b) $\int_{-\pi}^{\pi} \sin \left(x+x^{3}+x^{5}\right)-x \cos (\sin (x)) d x=0$
(c) The trigonometric functions $\sin 2 x, \cos 2 x$, and $\tan x$ all have fundamental period π.
(d) The following are trig identities $\sin (x+y)=\sin x \cos y+\cos x \sin y$ and $\cos (x+y)=\cos x \cos y+$ $\sin x \sin y$
(e) $e^{i \theta}=\sin \theta+i \cos \theta$
(f) The ODE $y^{\prime \prime}+y^{\prime}-3 y=\sin y$ is linear.
(g) The fuction $\mu=x$ is the integrating factor needed for the ODE $y^{\prime}+y / x=\sin x$.
(h) The values r for which $y=x^{r}$ is a solution of $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ are $r=1$ and $r=2$.
(i) $u(x, t)=e^{-t} \sin 5 x$ is a solution to the PDE $u_{x x}=25 u_{t}$
(j) If $u(x, y)=f(2 x-3 y)$ then $u_{x}=2 f(2 x-3 y)$

