Several Views of Integration by Parts

Steven Bellenot

September 2, 2007

1 Classic view

The classic integration by parts formula is

$$
\int u d v=u v-\int v d u
$$

which comes from integrating the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. When trying to use this formula on real integrals, there are a number of shortcuts and/or organized techniques that might make actual integration easier. Our example integral is

$$
\int x^{2} \cos n x d x
$$

which should illustrate the different methods.

2 Step by step

First we blindly do parts and parts. First $u=x^{2}$ and hence $d v=\cos n x d x$; the next step is to find $d u=2 x d x$ and $v=\frac{\sin n x}{n}$. The application of parts gives

$$
\int x^{2} \cos n x d x=x^{2} \frac{\sin n x}{n}-\int 2 x \frac{\sin n x}{n} d x
$$

and we do the second application with $u=2 x$ and $d v=\frac{\sin n x}{n} d x$; again $d u=2 d x$ and $v=-\frac{\cos n x}{n^{2}}$. The second application of parts gives

$$
\int x^{2} \cos n x d x=x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}-\int 2 \frac{\cos n x}{n^{2}} d x
$$

We can integrate this last intgral to obtain:

$$
\int x^{2} \cos n x d x=x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}-2 \frac{\sin n x}{n^{3}}+C
$$

(Alternately one can do parts a third time.)

3 Guess and check

This method is basically guess and then correct. First we guess

$$
F(x)=x^{2} \frac{\sin n x}{n}
$$

because the dirivative of the factor containing sin will match the integrand. But the product rule gives another term.

$$
F^{\prime}(x)=x^{2} \cos n x+2 x \frac{\sin n x}{n}
$$

We need to correct $F(x)$ to cancel this term, guess

$$
F(x)=x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}
$$

and now

$$
F^{\prime}(x)=x^{2} \cos n x+2 x \frac{\sin n x}{n}-2 x \frac{\sin n x}{n}+2 \frac{\cos n x}{n^{2}}
$$

We have a new term to cancel guess

$$
F(x)=x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}-2 \frac{\sin n x}{n^{3}}
$$

and finally

$$
F^{\prime}(x)=x^{2} \cos n x+2 \frac{\cos n x}{n^{2}}-2 \frac{\cos n x}{n^{2}}
$$

as required. Again

$$
\int x^{2} \cos n x d x=x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}+2 \frac{\sin n x}{n^{3}}+C
$$

Actually all Calculus 2 integration by parts problems are doable by guess and check. See the byguessnbygolly.pdf file.

4 Undetermined coefficients

Here we think of looking for a particular solution to the inhomogeneous problem $y^{\prime}=x^{2} \cos n x$. Undetermined coefficiens say to guess

$$
y=A x^{2} \sin n x+B x^{2} \cos n x+C x \sin n x+D x \cos n x+E \sin n x+F \cos n x
$$

We plug into the ODE
$y^{\prime}=A n x^{2} \cos n x+2 A x \sin n x-B n x^{2} \sin n x+2 B x \cos n x+C n x \cos n x+C \sin n x-D n x \sin n x+D \cos n x+E n \cos n x-F n \sin n x$
Collecting like terms:
$y^{\prime}=A n x^{2} \cos n x-B n x^{2} \sin n x+(2 A-D n) x \sin n x+(2 B+C n) x \cos n x+(C-F n) \sin n x+(D+E n) \cos n x$ and we get the system of equations

$$
\begin{aligned}
& 1=A n \quad x^{2} \cos n x \text { terms } \\
& 0=-B n \quad x^{2} \sin n x \text { terms } \\
& 0=2 B+C n \quad x \cos n x \text { terms } \\
& 0=2 A-D n \quad x \sin n x \text { terms } \\
& 0=D+E n \\
& 0=C-F n
\end{aligned} \quad \cos n x \text { terms } \quad \sin n x \text { terms } l l y
$$

So $A=1 / n, B=0, C=0, D=2 / n^{2}, E=-2 / n^{3}, F=0$. and we get the particular solution:

$$
y=\frac{1}{n} x^{2} \sin n x+\frac{2}{n^{2}} x \cos n x-\frac{2}{n^{3}} \sin n x
$$

The general solution needs $+C$, which adds the general homogeneous solution. While not needed, a clever person could have figured out that $B=C=F=0$ at the beginning.

5 Generalized parts

Lets rewrite parts as

$$
\int f g^{\prime}=f g-\int f^{\prime} g
$$

and now apply it twice to

$$
\int f g^{\prime \prime}=f g^{\prime}-\int f^{\prime} g^{\prime}=f g^{\prime}-\left(f^{\prime} g-\int f^{\prime \prime} g\right)=f g^{\prime}-f^{\prime} g+\int f^{\prime \prime} g
$$

And third time

$$
\int f g^{\prime \prime \prime}=f g^{\prime \prime}-f^{\prime} g^{\prime}+f^{\prime \prime} g-\int f^{\prime \prime \prime} g
$$

Applying to $f=x^{2}$ and $g^{\prime \prime \prime}=\cos n x$ gives $f^{\prime}=2 x, f^{\prime \prime}=2, f^{\prime \prime \prime}=0$ and $g^{\prime \prime}=\sin n x / n, g^{\prime}=-\cos n x / n^{2}$ and $g=-\sin n x / n^{3}$ so pluging into the formula

$$
\int f g^{\prime \prime \prime}=x^{2} \sin n x / n+2 x \cos n x / n^{2}-2 \sin n x / n^{3}
$$

The formulas continue.

$$
\int f g^{\prime \prime \prime \prime}=f g^{\prime \prime \prime}-f^{\prime} g^{\prime \prime}+f^{\prime \prime} g^{\prime}-f^{\prime \prime \prime} g+\int f^{\prime \prime \prime \prime} g
$$

6 Polynomial times $g^{(n)}(x)$

We apply the generalized formula's to the special case of a polynomial times a function we can integrate repeatedly. Our polynomial is x^{2} our $g^{(n)}(x)$ is $\cos n x$ we form a table. The u column does derivative as we go down while the $d v$ column does anti-derivatives. The third column is a diagonal product with alternating signs. The first entry in the third column comes from the diagonal x^{2} to $\sin n x / n$ and ends at $(+1)\left(x^{2}\right)(\sin n x / n)$. The next entry is the diagonal $2 x$ to $-\cos n x / n^{2}$ to $(-1)(2 x)\left(-\cos n x / n^{2}\right)$. The last entry is the diagonal 2 to $-\sin n x / n^{3}$ to $(+1)(2)\left(-\sin n x / n^{3}\right)$. Note the alternating signs $(+1),(-1),(+1)$, etc.

$u \quad d v$		
$\cos n x$		
$\sin n x / n$		
	$-\cos n x / n^{2} \quad(+1)\left(x^{2}\right)(\sin n x / n)$	
	$-\sin n x / n^{3}$	-1) $(2 x)\left(-\cos n x / n^{2}\right)$
		$(+1)(2)\left(-\sin n x / n^{3}\right)$

The answer is

$$
x^{2} \frac{\sin n x}{n}+2 x \frac{\cos n x}{n^{2}}-2 \frac{\sin n x}{n^{3}}+C
$$

