By Guess and By Golly Integration

Since we skipped Sections 7.3 and 7.4 several times we have had to integrate integrals like

$$
\int x e^{x} d t
$$

This short note gives the fastest and easiest way to integrate many integrals like this. Not only that but often the steps can be done via the TI- 89 without anyone being the wiser. This method only works on a few integrals, the most common being like the integral above or similar ones like

$$
\int x \sin x d x, \quad \int x^{2} e^{2 x} d x, \quad \int \ln x d x, \quad \int \arctan x d x
$$

Let's consider $\int x e^{x} d x$ and consider the e^{x} portion. Now if $y=f(x) e^{x}$, then the product rule is going to give $y^{\prime}=f(x) e^{x}+f^{\prime}(x) e^{x}$. That is a reasonable guess for $\int f(x) e^{x} d x$ is $f(x) e^{x}$, but the guess is wrong by $f^{\prime}(x) e^{x}$. So we guess $y=x e^{x}$ for the integral but $y^{\prime}=x e^{x}+e^{x}$ so we have an error of $-e^{x}$. So to get rid of the error, we must add $g(x)$ to $x e^{x}$ so that $g^{\prime}(x)$ is $-e^{x}$. But this is just $g(x)=-e^{x}$. So $x e^{x}-e^{x}$ is the integral. We can summarized using a table.

Goal	Guess	Result	Error
$x e^{x}$	$x e^{x}$	$x e^{x}+e^{x}$	$-e^{x}$
$-e^{x}$	$-e^{x}$	$-e^{x}$	0
$x e^{x}$	$x e^{x}-e^{x}$	$x e^{x}$	0

Lets repeat for $\int x^{2} \sin x d x$. This time we start with $-f(x) \cos x$ because the derivative of $-\cos x$ is $\sin x$. We go directly to the table.

Goal	Guess	Result	Error
$x^{2} \sin x$	$-x^{2} \cos x$	$x^{2} \sin x+2 x \cos x$	$-2 x \cos x$
$-2 x \cos x$	$-2 x \sin x$	$-2 x \cos x-2 \sin x$	$2 \sin x$
$2 \sin x$	$-2 \cos x$	$2 \sin x$	0
$x^{2} \sin x$	$-x^{2} \cos x-2 x \sin x-2 \cos x$	$x^{2} \sin x$	0

Now for $\int 10 x e^{-3 x} d x$, again straight to the tables. But note that the derivative of $f(x) e^{-3 x}$ adds a (-3) factor which means we have to divide our guesses by $(-1 / 3)$.

Goal	Guess	Result	Error
$10 x e^{-3 x}$	$(-10 / 3) x e^{-3 x}$	$10 x e^{-3 x}+(-10 / 3) e^{-3 x}$	$(10 / 3) e^{-3 x}$
$(10 / 3) e^{-3 x}$	$(-10 / 9) e^{-3 x}$	$(10 / 3) e^{-3 x}$	0
$10 x e^{-3 x}$	$(-10 / 3) x e^{-3 x}+(10 / 9) e^{-3 x}$	$10 x e^{-3 x}$	0

The second kind of functions where this work are for ugly functions with rational or polynomial like derivatives. Note that $\arctan x, \arcsin x$ and $\ln x$ have these kind of derivatives. The first step is to observe that the derivative of $x f(x)$ is $f(x)+x f^{\prime}(x)$. Lets do $\int \ln x d x$.

Goal	Guess	Result	Error
$\ln x$	$x \ln x$	$\ln x+x / x$	-1
-1	x	-1	0
$\ln x$	$x \ln x-x$	$\ln x$	0

Finally lets do $\int \arctan x d x$ - here is the table.

Goal	Guess	Result	Error
$\arctan x$	$x \arctan x$	$\arctan x+x /\left(1+x^{2}\right)$	$-x /\left(1+x^{2}\right)$
$-x /\left(1+x^{2}\right)$	$(-1 / 2) \ln \left\|1+x^{2}\right\|$	$-x /\left(1+x^{2}\right)$	0
$\arctan x$	$x \arctan x-(1 / 2) \ln \left(1+x^{2}\right)$	$\arctan x$	0

