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These are cryptic notes for Lecturing and as such are not to be completely trusted. If you see an error,
please let me know. In particular this does problems 24-30 in 12.9.

1 The separation

Our PDE to solve is the wave equation c2(uxx + uyy) = utt in the circular region C with radius ≤ a with
initial position and velocity f(x, y) and g(x, y) and u|∂C = 0.

We convert to polar coordinates the PDE becomes

c2(urr +
1
r
ur +

1
r2
uθθ) = utt

The iniatial conditions
u(r, θ, 0) = f(r, θ) ut(r, θ, 0) = g(r, θ)

and the boundary condition
u(a, θ, t) = 0

Assume u(r, θ, t) = R(r)Θ(θ)T (t) into the equation

c2(R′′ΘT +
1
r
R′ΘT +
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r2
RΘ′′T ) = RΘT ′′
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R
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=
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2 The T part

Positive values for the constant are not reasonable. So Let

T ′′

c2T
= −λ2

and hence when λ > 0 the function
T (t) = A cos cλt+B sin cλt

3 The Θ part

The condition on Θ(θ) is periodicity. We must have Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π) These requires

Θ′′

Θ
= −m2

where m = 0, 1, 2, 3, . . . is an integer; and when m > 0

Θ(θ) = A cosmθ +B sinmθ
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4 The R part, Bessel functions

We can rewrite the equation
R′′

R
+

1
r

R

R

′
−m2 1

r2
= −λ2

as
r2R′′ + rR′ + (λ2r2 −m2)R = 0

and our boundary condition is
R(a) = 0

and implied boundary condition of not being singular at r = 0.
Bessel’s equation of order m is

x2y′′ + xy′ + (x2 −m2)y = 0

which has a fundamental solution y = AJm(x) +BYm(x) where Jm is the Bessel function of the 1st kind (of
order m) and Ym is the Bessel function of the 2nd kind (of order m) and since Ym is singular at x = 0, it
will not be used here.

Our separation equation and Bessel’s equation are close. Let z = Jm(λx) to see how to get from one to
the other. We have z′ = λJ ′m(λx) and z′′ = λ2J ′′m(λx) Since y = Jm(x) is a solution

x2J ′′m(x) + xJ ′m(x) + (x2 −m2)Jm(x) = 0

Replace x by λx everywhere

x2λ2J ′′m(λx) + xλJ ′m(λx) + (λ2x2 −m2)Jm(λx) = 0

Re-write in terms of z
x2z′′ + xz′ + (λ2x2 −m2)z = 0

and we see that our separation equations has

R(r) = AJm(λr)

as its solution.
The condition R(a) = 0 implies that Jm(λa) = 0 or that λa is a zero of Jm. If km,n is the n th zero of

Jm and λm,n = km,n/a then (note λ > 0)

um,n(r, θ, t) = Jm(λm,nr) cos(mθ)(Am,n cos(cλm,nt) +Bm,n sin(cλm,nt))

and
u∗m,n(r, θ, t) = Jm(λm,nr) sin(mθ)(A∗m,n cos(cλm,nt) +B∗m,n sin(cλm,nt))

are solutions to the wave equation we started. The coefficients A,B,A∗ and B∗ are detemined from the
initial data, for example

Am,n =
2

a2J2
m+1(km,n)

∫ a

0

∫ 2π

0

rf(r, θ)Jm(λm.nr) cos(mθ) dθ dr

We find the coefficients below (with amn = Am,n, a∗mn = A∗m,n bmn = Bm,n, b∗mn = B∗m,n) a couple of
sections below.

5 Orthogonality

We show for fixed m, the functions yi = Jm(λm,ir) and yj = Jm(λm,jr) are orthogonal (with weight function
r) for i 6= j. By this we mean ∫ a

0

yi(r)yj(r)r dr = 0



This comes from the ODE that defines Jm.

x2z′′ + xz′ + (λ2x2 −m2)z = 0

x2z′′ + xz′ −m2z = −λ2x2z

z′′ +
1
x
z′ − 1

x2
m2z = −λ2z

This means yi(r) and yj(r) satisfy

y′′i +
1
r
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1
r2
m2yi = −λ2

m,iyi
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1
r
y′j −

1
r2
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Multiply the top equation by ryj and the bottom by ryi, subtract and integrate from 0 to a we get

(λ2
m,j − λ2

m,i)
∫ a

0

ryi(r)yj(r) dr =
∫ a

0

r(yjy′′i − yiy′′j ) + (yjy′i − yiy′j) dr

Note that
d

dr
(ryi(r)y′j(r)− ry′i(r)yj(r)) = r(y′iy

′
j + yiy

′′
j − y′′i yj − y′ij′j) + yiy

′
j − y′iyj

so we have an anti-derivative and

(λ2
m,j − λ2

m,i)
∫ a

0

ryi(r)yj(r) dr = (ayi(a)y′j(a)− ay′i(a)yj(a))− (0yi(0)y′j(0)− 0y′i(0)yj(0)) = 0

and since λm,j 6= λm,i, the orthogonally condition is true.
Note this doesn’t say J0(λ0,1r) is orthogonal to J1(λ1,1r) because they are obviously not orthogonal.

(Indeed, both are positive and continuous on 0 < r < a and hence their product cannot have a zero
integral.)

Exercise: Use the solutions y′′ = m2y to show cosmx, and sinnx are orthogonal on the interval [−π, π].

6 Fourier-Bessel Series

Now we need to satisfy the initial position and velocity. We need to treat the terms Jm(λm,nr) cos(mθ) and
Jm(λm,nr) sin(mθ) like double fourier series in the section before. The integral is slightly different than a
straight forward generalization would imply. There is a weighting factor of r in the integral.

The orthogonality condition drives this. There is the question of completeness. But if f(r) can be written
as
∑
cnJm(λm,nr) the orthogonality says

cn

∫ a

0

rJ2
m(λm,n) dr =

∫ a

0

rf(r)Jm(λm,nr) dr

Eventually, ∫ a

0

rJ2
m(λm,n) dr =

1
2
a2Jm+1(αmn)

7 Asmar

The zero’s of Jm are αmn where αm1 < αm2 . . . and λmna = αmn

f(r, θ) = a0(r) +
∞∑
m=1

(am(r) cosmθ + bm(r) sinmθ)



a0(r) =
∞∑
n=1

a0nJ0(λ0nr)

am(r) =
∞∑
n=1

amnJ0(λmnr)

bm(r) =
∞∑
n=1

bmnJ0(λmnr)

a0(r) =
1

2π

∫ 2π

0

f(r, θ) dθ

am(r) =
1
π

∫ 2π

0

f(r, θ) cosmθ dθ

bm(r) =
1
π

∫ 2π

0

f(r, θ) sinmθ dθ

a0n =
1

πa2J2
1 (α0n)

∫ a

0

a0(r)J0(λ0nr)r dr

amn =
2

πa2J2
m+1(αmn)

∫ a

0

am(r)Jm(λmnr)r dr

bmn =
2

πa2J2
m+1(αmn)

∫ a

0

bm(r)Jm(λmnr)r dr

a∗0n =
1

πcα0naJ2
1 (α0n)

∫ a

0

∫ 2π

0

g(r, θ)J0(λ0nr)r dθdr

a∗mn =
2

πcαmnaJ2
m+1(αmn)

∫ a

0

∫ 2π

0

g(r, θ)Jm(λmnr)r dθdr

b∗mn =
2

πcαmnaJ2
m+1(αmn)

∫ a

0

∫ 2π

0

g(r, θ)Jm(λmnr)r dθdr

8 Ways to feel comfortable about Jm(x)

Jm(x) =
1
π

∫ π

0

cos(mθ − x sin θ) dθ

For large x

Jm(x) ∼
√

2
πx

cos(x− mπ

2
− π

4
)

and for small x
Jm(x) ∼ 1

2mm!
xm


