Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Solve using Laplace transforms [see other side for transform table]

$$y'' + 4y = \delta(t - \pi)$$
 $y(0) = 1; y'(0) = 2;$

- 2. Find the following transforms or inverse transforms:
 - (a) $\mathcal{L}\left\{t^3 e^{7t}\right\}$
 - (b) $\mathcal{L}{f'''(t)}$ in terms of $F(s) = \mathcal{L}(f(t))$ and initial values of f.
 - (c)

$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2-4}\right\}$$

(d)

$$\mathcal{L}^{-1}\left\{\frac{s+2}{(s-3)^2+4}\right\}$$

- (e) $\mathcal{L}\{u_5(t)(t+2)\}$
- 3. True or False and a brief reason why or why not.
 - (a) The ODE $(1 t^2)y'' + t/y' + t^3y = 0$ is linear.
 - (b) The radius of convergence of $\sum_{n=0}^{\infty} (-2)^n x^n / (n+3)$ is 1/2.
 - (c) $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^{2n}$.
 - (d) $\exp(4x) = \sum_{n=0}^{\infty} 4^n x^n / n!.$
 - (e) For all t, $(u_1(t) u_3(t))(u_2(t) u_4(t)) = u_2(t) u_3(t)$
 - (f) The function $y(t) = u_5(t) \tan(t-5)$ is continuous at t = 5.
 - (g) The series solution about $x_0 = 1$ for $y'' + \frac{3}{x^2+1}y' + \frac{5}{(x-2)(x+3)}y = 0$ has a radius of converence $\rho \ge \sqrt{2}$
 - (h) If $y(x) = \sum_{n=0}^{\infty} a_n x^n$, then $y'''(0) = a_3$.
 - (i) The recurrence relation for IVP with y(0) = 0; y'(0) = 1 is $(n+2)(n+1)a_{n+2} (n+1)a_n = 0$ for $n \ge 0$, the series solution is

$$y(x) = \frac{x}{1} + \frac{x^3}{1 \cdot 3} + \frac{x^5}{1 \cdot 3 \cdot 5} + \dots + \frac{x^{2n+1}}{1 \cdot 3 \cdots (2n+1)} + \dots$$

(j) For all t, $u_1(t)(t-1) - u_2(t)(t-2) = \int_0^t u_1(x) - u_2(x) dx$

4. Find the first four non-zero terms of the series solution about $x_0 = 0$ to the IVP

$$(1 - x^2)y'' - xy' + y = 0, y(0) = 3, y'(0) = 0$$