Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Solve using Laplace transforms [see other side for transform table]

$$
y^{\prime \prime}+4 y=\delta(t-\pi) \quad y(0)=1 ; y^{\prime}(0)=2
$$

2. Find the following transforms or inverse transforms:
(a) $\mathcal{L}\left\{t^{3} e^{7 t}\right\}$
(b) $\mathcal{L}\left\{f^{\prime \prime \prime}(t)\right\}$ in terms of $F(s)=\mathcal{L}(f(t))$ and initial values of f.
(c)

$$
\mathcal{L}^{-1}\left\{\frac{s+1}{s^{2}-4}\right\}
$$

(d)

$$
\mathcal{L}^{-1}\left\{\frac{s+2}{(s-3)^{2}+4}\right\}
$$

(e) $\mathcal{L}\left\{u_{5}(t)(t+2)\right\}$
3. True or False and a brief reason why or why not.
(a) The ODE $\left(1-t^{2}\right) y^{\prime \prime}+t / y^{\prime}+t^{3} y=0$ is linear.
(b) The radius of convergence of $\sum_{n=0}^{\infty}(-2)^{n} x^{n} /(n+3)$ is $1 / 2$.
(c) $\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty} x^{2 n}$.
(d) $\exp (4 x)=\sum_{n=0}^{\infty} 4^{n} x^{n} / n$!.
(e) For all $t,\left(u_{1}(t)-u_{3}(t)\right)\left(u_{2}(t)-u_{4}(t)\right)=u_{2}(t)-u_{3}(t)$
(f) The function $y(t)=u_{5}(t) \tan (t-5)$ is continuous at $t=5$.
(g) The series solution about $x_{0}=1$ for $y^{\prime \prime}+\frac{3}{x^{2}+1} y^{\prime}+\frac{5}{(x-2)(x+3)} y=0$ has a radius of converence $\rho \geq \sqrt{2}$
(h) If $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $y^{\prime \prime \prime}(0)=a_{3}$.
(i) The recurence relation for IVP with $y(0)=0 ; y^{\prime}(0)=1$ is $(n+2)(n+1) a_{n+2}-(n+1) a_{n}=0$ for $n \geq 0$, the series solution is

$$
y(x)=\frac{x}{1}+\frac{x^{3}}{1 \cdot 3}+\frac{x^{5}}{1 \cdot 3 \cdot 5}+\cdots+\frac{x^{2 n+1}}{1 \cdot 3 \cdots(2 n+1)}+\cdots
$$

(j) For all $t, u_{1}(t)(t-1)-u_{2}(t)(t-2)=\int_{0}^{t} u_{1}(x)-u_{2}(x) d x$
4. Find the first four non-zero terms of the series solution about $x_{0}=0$ to the IVP

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+y=0, y(0)=3, y^{\prime}(0)=0
$$

