Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. The nonhomogenous ODE $y^{\prime \prime}-y^{\prime}-6 y=30 e^{t}$ has a corresponding homogenous ODE with general solution $C_{1} e^{3 t}+C_{2} e^{-2 t}$.
(a) Use undetermined coefficients to find a particular solution.
(b) Use variations of parameters to find a particular solution.
2. Solve the IVP $y^{\prime \prime}+5 y^{\prime}-6 y=60 \sin 2 t ; y(0)=0 ; y^{\prime}(0)=11$
3. True or False and a brief reason why or why not.

Problems (a)-(e) concern a spring mass system decribed as follows: A mass of 10 kilograms stretches a spring 4.9 meters. The mass is acted on by an external force of $10 \sin 3 t$ newtons and moves in a medium that imparts a viscous force of 6 newtons when the speed of the mass is 3 meters/second. The mass is released $1 / 2$ meter below the equilibrium with no initial velocity. [Use $g=9.8$ for the acceleration due to gravity, and the textbook's convention for the positive u direction.]
(a) The constant $\gamma=1 / 2$.
(b) The spring constant of the system is $k=20$.
(c) The initial position is $u(0)=0.5$.
(d) The initial velocity is $u^{\prime}(0)=3$.
(e) The transient solution can be written in the form $R \cos (3 t-\delta)$.
(f) The ODE $y^{\prime \prime}+y^{\prime}+\sin y=0$ is linear.
(g) The correct method of undetermined coefficient guess for solving $y^{\prime \prime}-2 y^{\prime}+y=e^{t}$ is $y(t)=A t^{2} e^{t}$.
(h) The correct method of undetermined coefficient guess for solving $y^{\prime \prime}-2 y^{\prime}+y=t^{2}+5$ is $y(t)=$ $A t^{2}+B$
(i) If you multiply the mass m of an undamped spring-mass system by two, the the natural frequency ω_{0} is reduced by one half.
(j) If the characteristic polynomial to the spring mass system $m u^{\prime \prime}+\gamma u^{\prime}+k u=0$ has roots $a \pm b i$ then the quasi frequency of the system is b.
4. Given that $y_{1}(t)=t^{3}$ is a solution to $t^{2} y^{\prime \prime}-t y^{\prime}-3 y=0$ use reduction of order [via $y(t)=v(t) t^{3}$] to find a second linearly independent solution.

