Show ALL work for credit; be neat; and use only ONE side of each page of paper. Do NOT write on this page. Calculators can be used for graphing and calculating only. Give exact answers when possible.

1. Use the Chain Rule to find $\partial z / \partial u$ and $\partial z / \partial v$ when $z=\sin (x / y), x=\ln u$ and $y=u^{2}-v^{2}$.
2. Fixing Maple errors. Each of the following produced an error or an empty graph, explain how to fix each.

- a $\operatorname{plot} 3 \mathrm{~d}\left(\exp ^{\wedge} \mathrm{x}^{*} \sin (\mathrm{y}), \mathrm{x}=0 . .1, \mathrm{y}=0 . .2^{*} \mathrm{Pi}\right)$;
- b plot3d($\left.\mathrm{x}^{\wedge} 2-\mathrm{x}^{*} \mathrm{y}+\mathrm{y}^{\wedge} 2, \mathrm{x}=0 . .1, \mathrm{y}=1 . .1\right)$;
- $\mathrm{c} \mathrm{f}=\sin (\mathrm{x})^{*} \mathrm{y}^{\wedge} 2+\mathrm{x}^{\wedge} 2^{*} \sin (\mathrm{y}) ; \operatorname{plot} 3 \mathrm{~d}(\mathrm{f}, \mathrm{x}=-1 . .1, \mathrm{y}=-1 . .1)$;
- $d \operatorname{plot} 3 \mathrm{~d}(\mathrm{x} \mathrm{y}, \mathrm{x}=-1 . .1, \mathrm{y}=-1 . .1)$;
- e $\operatorname{plot} 3 \mathrm{~d}(\sin (\mathrm{x}) * \sin (\mathrm{y}), \mathrm{x}=0 . . \mathrm{pi}, \mathrm{y}=0 . . \mathrm{pi})$;

3. For the function $f(x, y)=x^{3}+x y+y^{2}$

- a Compute the quadratic Taylor polynomial for f at the point $(-1,2)$.
- b Compute the equation of the normal line to f at the point $(-1,2)$.

4. The graph A is a plot of ∇f, the gradient of f and the graph B is a contourplot of g. (Light regions have higher values than dark regions.] Find the co-ordinates of all extrema of f and g and LABEL them as either local minimums, local maximums or saddle points.

5. Find the directional derivative of $f(x, y, z)=3 x^{2} y^{2}+2 y z$ as you leave the point $(1,-1,0)$ heading in the direction of the point $(0,1,1)$.
6. The point P is on the contour graph of the function f (below left) and the point Q is on the surface of the graph of the function g (below right). Let \mathbf{u} be the unit vector $\mathbf{u}=(-\mathbf{i}-\mathbf{j}) / \sqrt{2}$.

Find the sign (positive, negative or zero) of the partials and directional derivations:
$f_{x}(P), f_{y}(P), f_{x x}(P), f_{y y}(P), f_{x y}(P) \quad g_{x}(Q), g_{y}(Q), g_{x x}(Q)$ and $f_{\mathbf{u}}(P)$ and $g_{\mathbf{u}}(Q)$.

There is more test on the back.

7. Check that the point $(-1,1,2)$ lies on the surface $\cos (x+y)=e^{x z+2}$ and find the equation of the tangent plane to this surface at $(x, y, z)=(-1,1,2)$
8. Sketch the region of integration, reverse the order of integration and evaluate

$$
\int_{0}^{1} \int_{e^{x}}^{e} \frac{y}{\ln y} d y d x
$$

9. Find critical points of the function $f(x, y)=(x+y)\left(x^{2}+y^{2}-2\right)$. Classify these local extrema by filling out a table like the one below, with a separate line for each critical point. [Hint: Use your TI-89 to check that you got the correct collection of critical points.]

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	big D	Classification
$?$	$?$	$?$	$?$	$?$	$?$

10. Use your TI-89 to plot the $z=1$ contour of the function $z=g(x, y)=$ $x^{2}+x y+y^{2}$. On the same graph, plot some contour lines for $f(x, y)=x+y$. Use Lagrange Multipliers to find the maximum and minimum VALUES for $f(x, y)$ on the constraint $g(x, y)=1$.
