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Abstract

In the simplicial theory of hypercoverings we replace the indexing category ∆
by the symmetric simplicial category ∆S and study (a class of) ∆injS-hypercoverings,
which we call spaces admitting symmetric (semi)simplicial filtration- this special class
happens to have a structure of a module over a graded commutative monoid of
the form Sym M for some space M . For ∆S-hypercoverings we construct a spectral
sequence, somewhat like the Čech-to-derived category spectral sequence. The ad-
vantage of working with ∆S over ∆ is that various combinatorial complexities that
come with working on ∆ are bypassed, giving simpler, unified proof of results like
the computation of (in some cases, stable) singular cohomology (withQ coefficients)
and étale cohomology (with Q` coefficients) of the moduli space of degree n maps
C → Pr with C a smooth projective curve of genus g, of unordered configuration
spaces, of the moduli space of smooth sections of a fixed gr

d that is m-very ample for
some m etc. In the special case when a ∆injS-object X admits a symmetric semisim-
plicial filtration by M , we relate these moduli spaces to a certain derived tensor.
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1 Introduction

The theory of simplicial spaces forms the core of Verdier’s theory of hypercoverings and in
Deligne’s theory of cohomological descent. We build a theory of hypercoverings where the
traditional indexing category∆ (commonly known as the simplicial category) is replaced
by ∆S (which we call the symmetric simplicial category (see Definition 2.1), and which
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contains ∆ as a subcategory). Intuitively speaking, whereas ∆S enjoys all the properties
that makes ∆ a fundamental part of homotopy theory, its objects also have nontrivial
automorphism groups, isomorphic to the symmetric groups. 1. And this is the main
advantage of working with ∆S. The category ∆S was first introduced as a part of the
concept of crossed simplicial groups independently by Fiedorowicz-Loday ([FL91]) and
Krasauskas ([Kra87]). In particular, if one’s goal is, for example, to compute (stable)
(co)homology of moduli spaces (which often come in families indexed by a parameter,
say n) that are naturally quotients of spaces equipped with permutation actions by {Sn},
then ∆S, by encoding the permutation action as automorphisms in the category itself,
gives us a precise tool to bypass the combinatorial complexities that form a part of ∆.

Amongst∆S spaces, we define, and give special attention to, spaces admitting symmet-
ric semisimplicial filtration (see Definition 2.10) because of their frequent manifestations
in topology and geometry. Roughly speaking, given a family of spaces {Xn}n∈N, we say
X :=

∐

Xn (or equivalently {Xn})admits symmetric semisimplicial filtration by a space M
with filter gap e, if X forms a module over the graded commutative topological monoid
Sym M , where M has grading e, and satisfies two minor additional conditions (see Defi-
nition 2.10). We call

Un := Xn − f0(M × Xn−e)

the space of M -indecomposables of Xn; we use the same term for

U :=
∐

Un

as well. We also write

U = X − (M × X )

which has the unambiguous meaning of X − f0(M × X ) under the module structure.

Results. To state our first two theorems we need some notations and conventions. For
a graded vector space V , let V (r) denote its r th graded component, and let V odd :=
⊕ j∈ZV

(2 j+1) and V even := ⊕ j∈ZV
(2 j) denote the odd and even graded subspaces of V ,

respectively. Throughout this paper, by a space we mean a locally-compact Hausdorff
topological space or a quasi-projective algebraic variety over some field. By a morphism
we mean a continuous map of topological spaces or a morphism of algebraic varieties. For
a Z-scheme X we continue to denote its base change to any algebraically closed field K by
X ; in turn we mean Hq(X ;Q) (respectively, Hq

c (X ;Q)) to stand for both the singular co-
homology Hq(X (C);Q) (respectively, Hq

c (X (C);Q), singular cohomology with compact
support) as well as the étale cohomology Hq

ét(X (K);Q`) (respectively, Hq
ét,c(X (K);Q`),

étale cohomology with compact support), ` coprime to char K .

Theorem 1 (Cohomology of indecomposables vs. indecomposables in cohomology).
Let M and {Xn}n∈N be locally compact connected Hausdorff topological spaces and let X =
∐

Xn. Suppose that X admits a semisimplicial filtration by M, with face maps given by

fi : M p × Xn−ep→ M p−1 × Xn−e(p−1).

1This might give the reader the impression that ∆S is the equivalent to the category of finite sets, but it’s
not, as one can gather immediately from the axioms of Definition 2.1
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Let e > 0 be the filter gap and U =
∐

Un the space of M-indecomposables. Then there exists
a spectral sequence

Ep,q
1 =

⊕

l+m=q

⊕

i+ j=p

�

Sym iHodd
c (M ;Q)⊗Λ jHeven

c (M ;Q)
�(l) ⊗Hm

c (Xn−ep;Q) (1.1)

where the differentials are given by alternating sum of the pullbacks on cohomology induced
by the face maps:

dp,q
1 : Ep,q

1 → Ep+1,q
1

dp,q
1 :=

p−1
∑

i=0

(−1)i f ∗i .

If {Xn} and M are quasi-projective algebraic varieties over a field K, then there is a spectral
sequence of Gal(K/K)-representations

Ep,q
1 =

⊕

l+m=q

⊕

i+ j=p

�

Sym iHodd
ét,c(M ;Q`)⊗Λ jHeven

ét,c (M ;Q`)
�(l) ⊗Hm

ét,c(Xn−ep;Q`)

=⇒ H p+q
ét,c (Un;Q`)

where ` is coprime to char K, and the differentials are exactly the same as above. �

In the special case when all spaces are smooth projective varieties or compact oriented
manifolds without boundaries, one obtains a close cousin (essentially the Verdier dual)
of Theorem 1 as follows.

Theorem 2. Let M and {Xn}n∈N be compact oriented manifolds without boundaries. Sup-
pose that {Xn}n∈N admits a semisimplicial filtration by M, with face maps given by

fi : M p × Xn−ep→ M p−1 × Xn−e(p−1).

Let e > 0 be the filter gap and {Un} the space of M-indecomposables. Furthermore, let

c(n, p) := dimR(Xn)− dimR(M
p × Xn−ep).

Then there exists a second quadrant spectral sequence which converges to H∗(Un;Q) as an
algebra. The E1 page of that spectral sequence reads as:

E−p,q
1 =

⊕

l+m=q−c(n,p)

⊕

i+ j=p

�

Sym iHodd(M ;Q)⊗Λ jHeven(M ;Q)
�(l) ⊗Hm(Xn−ep;Q)

=⇒ Hq+p(Un;Q) (1.2)

with the differentials given by the alternating sum of the Gysin pushforwards induced by the
face maps i.e.

d−p,q
1 : E−p,q

1 → E−(p−1),q
1

dp,q
1 :=

p−1
∑

i=0

(−1)i fi∗.
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If {Xn} and M are smooth projective algebraic varieties over a field K, and if we define

c(n, p) := dimK(Xn)− dimK(M
p × Xn−ep),

then we have a second quadrant spectral sequence of Gal(K/K)-representations whose E1
page reads as

E−p,q
1 =

⊕

l+m=q−2c(n,p)

⊕

i+ j=p

�

Sym iHodd
ét (M ;Q`)⊗Λ jHeven

ét (M ;Q`)
�(l) ⊗Hm

ét(Xn−ep;Q`)(−c(n, p))

=⇒ Hq+p
ét (Un;Q`)

where ` is coprime to char K, the differentials exactly the same as above, and the spectral
sequence converges to H∗(Un;Q`) as an algebra. �

Remark 1.1. To the reader familiar with the concept of derived indecomposables (see, for
example, [GKRW21, Defnition 8.5]) note that the dual (in the sense of Verdier duality) of
the spectral sequence above is

TorHBM
∗ (Sym M)(Q,Q)⊗HBM

∗ (X )
∼= Sym (HBM

∗ (ΣM))⊗HBM
∗ (X )

where ΣM denotes the suspension of M; which is the associated graded of

TorHBM
∗ (Sym M)(HBM

∗ (X ),Q),

the derived indecomposables of HBM
∗ (X ) as a HBM

∗ (Sym M)-module. Indeed, instead of using
homological algebra on the complex of sheaves (2.8) from Lemma 2.11 (as we do for proving
Theorem 1 and 2) if we use homotopical algebra, we obtain the following isomorphism in
the symmetric monoidal category of complexes of Q-sheaves on X :

TorSym (RΓc(M ,ωM ))(RΓc(X ,ωX ),Q)∼= RΓc(U ,ωU)

where, for any space B, ωB denotes its dualizing sheaf, and this is a stronger statement than
Theorem 2; we prove a more general version of this isomorphism in [Ban23].

To compute the stable cohomology with MHS of the moduli spaces of interest, however,
we stick to homological algebra because (a) it is enough for our purposes, as demonstrated
in the proofs of theorems 1 and 2, (b) the homological algebra techniques lend themselves
more easily to cases where the ∆S-objects do not satisfy all the axioms of spaces admitting
a symmetric semi-simplicial filtration on those nose, like in the proofs of theorems 3 and 5.

Before we state the other results, let us briefly look at the ubiquity of families that
admit a symmetric semisimplicial filtration.

Some context and some examples. There are many examples of families of spaces ad-
mitting a symmetric semisimplicial filtration (and thus satisfying the hypothesis of Theo-
rem 1), including, but not limited to the following.

1. The nth-symmetric powers of a space X . Let Xn = Sym nM . Define

fi : M p+1 × Sym n−2(p+1)M → M p × Sym n−2pM

(a0, . . . , ap), {b1, . . . , bn−2p} 7→ (a0, . . . , âi , . . . , ap), {ai , ai , b1, . . . , bn−2p} (1.3)
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where (a0, . . . , ap) denotes an ordered p+1-tuple of elements in M , and {b1, . . . , bp}
denotes an unordered p-tuple and âi stands for ai (the (i+1)th entry) removed. It
is easy to check that with these morphisms as face maps, the semisimplicial space
{M p × Sym n−2pM} naturally conforms to Definition 2.10 i.e. Sym M admits sym-
metric simplicial filtration by M with filter gap 2. The space of M -indecomposables
is Un = UConf n(M), the unordered configuration space of n distinct points in M . For
the explicit computation of the spectral sequence that converges to H∗(UConf n(M);Q),
see Corollary 6.

2. The moduli space of (r + 1)-tuples of monic polynomials of degree n. Let Polyn,r+1

be the space of (r + 1)-tuples of monic degree n homogeneous polynomials in one
variable over an algebraically closed field K , and let Polyn,r+1

v be the locus of those
r-tuples having no common roots of multiplicity ≥ v. Then for any ν ≥ 1, the
space Polyn,r+1 admits a symmetric semisimplicial filtration by A1 with filter gap ν.
Indeed, we have a semisimplicial space given by {(A1)p × Polyn−pv,r+1}0≤p≤n with
face maps defined by

fi : (A1)(p+1) × Polyn−(p+1)v,r+1→ (A1)p × Polyn−pv,r+1

(a0, . . . , ap), (P1(z), . . . , Pr(z)) 7→ (a0, . . . , âi , . . . , ap−1),
�

(z − ai)
v P1(z), . . . , (z − ai)

v Pr(z)
�

That the face maps indeed satisfy the axioms of Definition 2.10 is explained in
Section 3. In particular, Polyn,r+1

v is the space of A1-indecomposables. The complex
points of the space Polyn,r+1

1 (noting that Polyn,r+1
v is defined over Z for all n, r

and ν), is referred to as Ratn(P1,Pr−1) by Farb-Wolfson, the moduli space of ‘based
holomorphic maps’ that take∞ to [1 : . . . : 1] (see [FW16]). The final result one
obtains using Theorem 1 is given in Corollary 7.

3. The moduli space of degree n maps C → Pr , Morn(C ,Pr). Let C be a smooth projec-
tive curve of genus g ≥ 0 defined over an algebraically closed field K and let J(C)
denote the Jacobian of C . Let Picn(C), which is (noncanonically, by a translation)
isomorphic to J(C), denote the space of degree n line bundles on C . A degree n
map C → Pr is determined by

i. a choice of a line bundle L ∈ Picn(C)

ii. sections s0, · · · , sr ∈ H0(C , L) having no common zeroes

whence we have

C → Pr

x 7→ [s0(x) : · · · : sr(x)].

Let Morn(C ,Pr) denote the moduli space of all degree n maps C → Pr . Define Xn
by

Xn := {L, [s0 : . . . : sr] : L ∈ Picn(C), si ∈ H0(C , L) for all i}.

When n ≥ 2g (for g ≥ 2, even n ≥ 2g − 1 works for our purposes), by the
Riemann-Roch theorem dim H0(C , L) = n− g + 1 for all L ∈ Picn(C), which makes
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Xn the projectivisation of a rank (r + 1)(n − g + 1) vector bundle on Picn(C) and
Morn(C ,Pr) ⊂ Xn is Zariski open dense: 2

P(H0(C , L)r+1)∼= P(n−g+1)(r+1)−1 Xn

Picn(C)

Now Xn has a natural stratification given by the number of common zeroes of an
(r + 1)-tuple of global sections of some degree n line bundle, which in turn shows,
by Definition 2.10 (see Section 3 for details) that Xn admits a symmetric semisim-
plicial filtration by C , with filter gap e = 1 and the space of C-indecomposables
Morn(C ,Pr).

As we already mentioned, all the examples above are instances of Definition 2.10, of
spaces admitting symmetric semisimplicial filtration, and the computation of their (sta-
ble) cohomology is covered in Section 3. However, the cohomology of Morn(C ,Pr) is
interesting enough that it warrants being recorded in the introduction.

The moduli space of algebraic morphisms of degree n from a genus g curve C → Pr : Recall
that Morn(C ,Pr) denote the moduli space of degree n morphisms C → Pr i.e.

Morn(C ,Pr) :=
¦

�

L, [s0 : . . . : sr]
�

: degree of L = n, si ∈ H0(C , L),

s0, . . . , sr have no common zeroes
©

Furthermore, we denote a vector space spanned by {a1, . . . , ak} over Q by Q〈a1, . . . , ak〉.

Theorem 3. Let C be a smooth projective curve over C of genus g, and let r and n be fixed
positive integers such that n ≥ 2g. Let n0 := n− 2g. Then there exists a second quadrant
spectral sequence which converges to H∗(Morn(C ,Pr)) as an algebra:

E−p,q
2 =⇒ Hq−p(Morn(C ,Pr)),

and it has the following description:

1. The E2 term is a bigraded algebra. For p ≤ n0 the E−p,q
2 is the (p, q) graded piece of

H∗(J(C);Q)[h]/hr ⊗∧Q〈t〉 ⊗ SymQ〈α1, . . . ,α2g〉,

where:

(i) H i(J(C);Q) has degree (0, i), h has degree (0,2), t has degree (−1, 2r+2) and
αi has degree (−1, 2r + 1) for all i,

(ii) modulo elements of degree (−i, j) with i > n0

2. The E∞ page is given by: E−p,q
2 = E−p,q

∞ for all q, and p ≤ n0.

2For n≤ 2g−2 the description of Xn as the projectivisation of a vector bundle on Picn(C) no longer holds;
it has been the subject of intense study for decades, under the name of Brill-Noether theory (for a through
introduction see [ACGH07, Chapter V]).
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3. Furthermore, this is a spectral sequence of mixed Hodge structures, where for all i,
Q〈αi〉 carries a pure Hodge structure of weight 2(r + 1), and Q〈t〉 is pure of weight
2(r + 1), and h is of type (1,1).

Remark 1.2. Note that the ground field is assumed to beC in the theorem above. The proof of
the theorem works for all fields except the part where we use some results from Brill-Noether
theory (see [ACGH07, Chapter IV, Section 2] on universal divisors). It is widely accepted
that most, if not all, of the results from Brill-Noether theory that we use, hold over fields
of positive characteristics as well. In turn Theorem 3 should hold over any algebraically
closed field. However, it seems that there might be some gaps in Brill-Noether theory for
positive characteristics in literature, so for the sake of being thorough we stick to C. For an
expert discussion on Brill-Noether theory in positive characteristics see e.g. [JP21] and the
references therein.

Note that when C = P1, the Jacobian of P1 is just a point, and the theorem above gives
us the following corollary.

Corollary 4. Let r and n be positive integers. Then

H∗(Morn(P1,Pr);Q)∼= Q[h]/hr ⊗∧Q{t}

where t has cohomological degree 2r+1. Furthermore, over a field κ, with algebraic closure
κ, we have an isomorphism of Gal(κ/κ)-representations:

H i
ét(Morn(P1,Pr);Q`) =











Q`(− j) i = 2 j, 0≤ j ≤ r − 1

Q`(−( j + 1)) i = 2 j + 1, r ≤ j ≤ 2r − 1

0 otherwise.

Remark 1.3. Strictly speaking Corollary 4 follows from Theorem 3 only when the ground
field is C. We actually prove Corollary 4 independently, without using Theorem 3, and the
proof works whatever the characteristic of the ground field might be. This is because even
though both Corollary 4 and Theorem 3 are applications of Theorem 2, with the Jacobian of
P1 being just a point, we do not require the power of Brill-Noether theory in all its generality
for Corollary 4 the way we do for Theorem 3.

One should note here that spaces admitting symmetric semisimplicial filtration arise
as a special type of∆injS object. In particular, unlike the previous examples, the following
is an instance where the cohomology computation is heavily dependent on the ∆injS
structure of the moduli space under consideration (see Section 4 for details); however,
the space itself does not satisfy the conditions of admitting a symmetric semisimplicial
filtration by a fixed space.

More context and one more example: The moduli space of smooth sections of a gr
d .

A linear series (or system) is a vector subspace of the vector space of global sections of
a line bundle on a smooth projective curve. A linear system V on a smooth projective
curve X is called a gr

d if V ⊂ H0(X , L), where L is a degree d line bundle on X and V
is a complex (r + 1) dimensional vector space. A gr

d , say V , is m-very ample if for every
effective divisor ξ ∈ X of degree m+ 1, we have that

dimV (−ξ) = r + 1− (m+ 1),
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whereV (−ξ) := H0(X , L⊗O (−ξ))∩V (see Definition 4.1 and the subsequent discussion).
Though the following result cannot be obtained as a corollary to Theorem 1, the basic
principles of the proof of Theorem 1 hold almost verbatim to prove the following on the
(stable) cohomology of the moduli space of smooth sections of a gr

d that is m-very ample.

Theorem 5. Let X be a smooth projective curve of genus g over C. Let V be a linear system
on X of type gr

d ; moreover let V be m-very ample. Define V ◦ ⊂ V to be the locus of smooth
sections in V . Then for all i ≤ m−1

2 the following holds:

H i(V ◦;Q)∼=

¨

Sym p−2H1(X ;Q)(−(p− 1))⊕ Sym pH1(X ;Q)(−p) i = 2p

Sym p−1H1(X ;Q)(−(p− 1))⊕ Sym pH1(X ;Q)(−(p+ 1)) i = 2p+ 1.

Note that the stable range depends on the degree of very ampleness m.
Relation to other results. In each of the examples discussed here, the ‘natural’ dense

open subsets i.e the ‘space of indecomposables’ are the ones whose topological properties
(e.g (co)homology) we are interested in. A lot of work has been done computing the
cohomology of such examples. See e.g Church [Chu12], Totaro ([Tot96], Farb-Wolfson-
Wood [FWW19] and the references therein.

For the examples about moduli spaces of morphisms, there are prior results by Segal
([Seg79]), Farb-Wolfson (see [FW16], for a motivic perspective), Gadish ([Gad17] from
the perspective of representation stability) and others. In the same paper ([Seg79]),
Segal also has results regarding homological stability for Example 3. Theorem 3 and
Corollary 4 are algebro-geometric and arithmetic generalizations of Segal’s [Seg79], on
the moduli space of degree n maps C → Pr (for the case of C = P1 over C, see also
[GG20] and the references therein). Segal proved that Morn(C ,Pr) is stably homologous
to the moduli space of continuous maps C → Pr over the ground field C by a beautiful
trick often referred to as ‘bringing zeroes from infinity’, which, of course, works in the
analytic topology and does not allow us to keep track of the weights, unlike Theorem 3
and Corollary 4.

Our method of proof shares certain similarities with Petersen’s work in [Pet17] and
Tommasi’s work in [Tom14] insofar as all have essentially the same root- Deligne’s theory
of cohomological descent. In particular, [Pet17, Theorem 3.3] computes the cohomology
of a simplicial space whose face maps are closed embeddings; and in [Tom14], Tommasi
constructs an augmented semisimplicial space to compute the cohomology of the moduli
space of smooth hypersurfaces.

It has been brought to our attention that Tommasi ([Tom]) is also studying the moduli
space of smooth sections of a line bundle over a smooth projective curve with the goal
of computing some stable cohomology, sans the notion of m-very ampleness. A similar
topic has been studied by I. Banerjee in [Ban20] that relates the integral cohomology
of the moduli space of sections of a line bundle with certain commutator subgroups of
the surface braid group. Parallel to this, Aumonier ([Aum21]) used, like Tommasi, the
Vassiliev spectral sequence, and homotopy theoretic methods to show that these moduli
spaces are rationally cohomologous (stably) to the moduli space of continuous sections.
In this paper, however, we bypass the combinatorial complexities that are involved in
Vassiliev’s spectral sequence and moreover have the added advantage that our methods
are algebraic, and in turn constantly keep track of the weights.

Finally, to the best of my knowledge, the fact that all of these examples can be studied
under the same framework joined by a common thread- the property of being a ∆S or a
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∆injS object, has not been addressed in the literature, neither has the symmetric simplicial
category been exploited to study these examples before. A beautiful paper (with very
different goals) that is worth mentioning at this juncture is Dyckherhoff-Kapranov’s work
on ribbon graphs (see [DK15])- they use certain crossed simplicial groups to describe the
combinatorics that marked surfaces with G-structures come equipped with.

Apart from the applications of Theorems 1 and 2 discussed later in this paper, some
immediate consequences of Theorem 1 are Theorem A and Corollary B of [Ban21], which
disproves (in Theorem A) Conjecture G’ posed by Vakil and Wood in [VMW13], and proves
a strengthening of another (Conjecture H’ of [VMW13], Corollary B of [Ban21]). The
conjectures are centred on certain locally closed subspaces of Sym n(P1) and the author, in
[Ban21], gives (counter)examples to the principle of Occam’s razor for Hodge structures.
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2 The symmetric simplicial group S•

In this section our goal is to prove Theorems 1 and 2. To this end, we first collect some
basics on symmetric (semi)simplicial space, following [FL91], then study certain instances
of ∆injS-spaces and locally constructible sheaves, and finally use them to prove theorems
1 and 2.

2.1 Generalities on the category ∆S

Definition 2.1. Let [p] := {0, . . . , p} be an ordered set (in the obvious way) with (p + 1)
elements. Let ∆ be the simplicial category with these objects [n] and morphisms given by
monotone maps of ordered sets [n]→ [m]. The morphisms of ∆ are generated by the face
maps

f ∆j : [p− 1]→ [p]

that misses j and the degeneracy maps

s∆j : [p+ 1]→ [p]

that hits j twice, j = 0 . . . p. The subcategory ∆inj ⊂ ∆ contains all its objects, but only the
injective monotone maps. The symmetric simplicial category, which we denote by ∆S, is
a small category with the following structure:

i. the objects of ∆S are [p], p ≥ 0,
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ii. ∆S contains ∆ as a subcategory,

iii. Aut∆S[p] = Sop
p+1 (opposite group of Sp+1),

iv. any morphism in∆S can be uniquely written as a compositeφ.g whereφ ∈ Hom∆([p], [m])
and g ∈ Sop

p+1.

The symmetric semisimplicial category ∆injS ⊂∆S contains, as objects, those in ∆S, and
as morphisms, only the injective maps in ∆S.

Define, for each p,
Sp := Sp+1,

the symmetric group on (p + 1) letters, and we call S• the symmetric simplicial group,
where S• := {Sp}p≥0. In Lemma 2.3 and Proposition 2.4 we will see that S• is not just a
collection of symmetric groups; but rather, it is a simplicial set whose face and degeneracy
maps satisfy additional relations.

Multiplication in Sp is the usual group multiplication in Sp+1; the composition of g
and h in Aut∆S[p] is also given by the group multiplication i.e. g◦h= hg. For all m, p ≥ 0,
and for all g ∈ Aut∆S[n] and φ ∈ Hom∆([m], [p]), thanks to the last axiom we have the
following commutative diagram:

[m] [p]

[m] [p]

φ

φ∗(g)
g◦φ g

g∗(φ)

for an unique φ∗(g) ∈ Aut∆S[m] and an unique g∗(φ) ∈ Hom∆([m], [p]), which defines
the composition g◦φ. Note that∆S is naturally equipped with face and degeneracy maps,
and we continue to denote them by f ∆j and s∆j respectively.

Remark 2.2. The symmetric simplicial group is a special case of something much more
general- those are called crossed simplicial groups (see [FL91, Definition 1.1]). One such
instance arises in the case of Conne’s cyclic homology, whose objects are [p], like in∆, but
the automorphism groups are cyclic groups. Other examples of crossed simplicial groups
include that formed by the braid groups, the dihedral groups, the hyperoctahedral groups
etc. For a complete treatment of crossed simplicial groups see [FL91].

Some important observations on S• before we move on to defining objects on the cat-
egory ∆S. Recall that a simplicial set is a functor T :∆op→ Sets, which we often denote
by T•; i.e. it is a simplicial object in Sets. Unless otherwise stated, for any simplicial
object T• in a category C , we will denote its face and degeneracy maps by f T

i and sT
i i.e.

f T
i := T ( f ∆i ), sT

i := T (s∆i ).

Lemma 2.3. ([FL91, Lemma 1.3]) The symmetric simplicial group S• is a simplicial set
given by

S :∆op→ Sets

[p] 7→ Sp.

10
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Proof. The functor

S :∆op→ Sets

[p] 7→ Sp.

is well-defined by Axiom iv, Definition 2.1. Indeed, for

φ : [m]→ [p]

in ∆, we have a partition of the ordered set [m] as

[m] =
∐

0≤i≤p

φ−1(i),

which in turn defines an unique
φ∗ : Sp→ Sm,

where φ∗(g) ∈ Sm permutes elements of [m] by permuting the p + 1 partition blocks
φ−1(i), 0 ≤ i ≤ p, by g ∈ Sp, while respecting the internal ordering each of the blocks
φ−1(i) posses by virtue being a subset of the ordered set [m].

In the following proposition we record some relations the face maps f Sj and degen-
eracy maps sSj of the simplicial set S• satisfy, which would be used later to give a simple
characterization of S•-objects in terms of simplicial objects satisfying additional relations
(see Lemma 2.6).

Proposition 2.4. For all p, and all σ ∈ Sp, the face maps f Sj and the degeneracy maps sSj
of the simplicial set S• are such that–

i. the following relations hold:

f Sj (σσ
′) = f Sj (σ) ◦ f S

σ−1( j)(σ
′) (2.1)

sSj (σσ
′) = sSj (σ) ◦ sS

σ−1( j)(σ
′)

ii. the following diagrams commute:

[p− 1] [p]

[p− 1] [p]

f ∆
σ−1( j)

f Sj (σ) σ

f ∆j

[p+ 1] [p]

[p+ 1] [p]

s∆
σ−1( j)

sSj (σ) σ

s∆j

(2.2)

Proof. The statement of this proposition is a special case of Proposition 1.7 of [FL91].
Plugging in S• in place of more general crossed simplicial groups ‘G∗’ in the proof [FL91,
Proposition 1.7] proves the relations above.

Just as the main power of∆ (and∆inj) lie in encoding the combinatorial information
of objects in a category C in a succinct fashion by considering functors from ∆, the
strength of ∆S (and, of course, ∆injS) lie in throwing the extra structure provided by the
action of {Sp}p∈N into the mix.

11
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Definition 2.5. Let C be a category. A symmetric simplicial object (or a S•-object) is a
functor T : (∆S)op → C . A symmetric semisimplicial object (or S•,inj-object) is defined
likewise.

We follow the conventional notation from the standard simplicial case: we denote
such a functor simply by T•. Also, we write

Sp × Tp→ Tp

to denote natural action of Sp+1 on Tp that comes from T• being a∆S (respectively∆injS)
object, and we will denote (g, t) simply by g t for all g ∈ Sp, t ∈ Tp and for all p ≥ 0.
In our cases C will be the category of topological spaces, or the category of schemes
(with étale topology). We will also consider symmetric cosimplicial objects (and symmetric
cosemisimplicial objects) in the category of Q-vector spaces over a space.

Starting with the following lemma, for the rest of this subsection we try to understand
the bridge between objects over ∆ and ∆S.

Lemma 2.6. The notion of a S•-object in C is equivalent to the notion of a simplicial object
T• in C with the following additional structure:

i. left group actions Sp × Tp→ Tp for all p ≥ 0,

ii. face relations f T
j (σt) = f Sj (σ)( f

T
σ−1( j) t),

iii. degeneracy relations sT
j (σt) = sSj (σ)(s

T
σ−1( j) t),

In fact it suffices to specify the face and degeneracy relations for the generators of Sp. A
S•-map φ• : T• → T ′• is the same thing as a simplicial map such that each φp : Tp → T ′p is
Sp-equivariant.

Proof. This is a special case of Lemma 4.2 of [FL91]. The basic idea behind the proof is
that the inclusion ∆ ⊂ ∆S defines for each S•-object T• an underlying simplicial object.
Paired with Proposition 2.4 the statement follows.

Now let X be a space and ShQ(X ), where Q is our ‘coefficient field’, be the abelian
category of sheaves of Q-modules on X . For sheaves A, B ∈ ShQ(X ) let Hom (A, B) ∈
ShQ(X ) denote the internal hom. A symmetric cosimplicial sheaf, also called an S•-sheaf
or ∆S-sheaf is a functor

F :∆S→ ShQ(X ).

We will denote the constant sheaf supported on X by Q
X

. Note that a S•-sheaf F• has
a natural structure of a cosimplicial sheaf because ∆ ⊂ ∆S. Also observe that Fn is
naturally a sheaf of Q

X
[Sp]-modules. Let

�

Fp ⊗ sgnp+1

�Sp+1 denote symmetric group
invariants of the sheaf Fp under the permutation action of Sp+1 twisted by the sign.

Lemma 2.7. The sheaf Ext ∗∆S(QX
,F•) is isomorphic to the homology of the complex of

coinvariants
�

�

Fp ⊗ sgnp+1

�Sp+1 , d
�

where d =
∑

(−1)i fi .

12
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Proof. The statement is a special case of Corollary 6.10 of [FL91]. The idea is roughly as
follows. In [FL91] they choose a certain biresolution of Q

X
which gives rise to a bicomplex

computing Ext ∗∆S(QX
,F•). The naive filtration by row gives a spectral sequence with

the cohomology of Sp+1 with coefficients in
�

Fp ⊗ sgnp+1

�Sp+1 on the E1 page and the
differentials are naturally given by the alternating sum of the face maps. And this spectral
sequence converges to Ext ∗∆S(QX

,F•).

Recall that since F• is a cosimplicial sheaf, the cohomology of the complex

F0→F1→ ·· ·

with differentials given by the alternating sum of the face maps d =
∑

(−1)i fi is given by
Ext ∗∆(QX

,F•).

Lemma 2.8. If F• is an S•-sheaf, then the canonical map

Ext n
∆(QX

,F•)→ Ext n
∆S(QX

,F•)

is an isomorphism for all n.

Proof. For a proof see Theorem 6.16 of [FL91].

The main takeaway from this subsection is the following proposition:

Proposition 2.9. Let F be a S•-sheaf. The surjection of complexes
�

Fp, d
�

→
�

�

Fp ⊗ sgnp+1

�Sp+1 , d
�

,

where d =
∑

(−1)idi , is a quasi-isomorphism.

Proof. Follows immediately from lemmas 2.7 and 2.8. Indeed, by Lemma 2.8 we have

Ext p
∆(QX

,F•)
∼=−→ Ext p

∆S(QX
,F•)

and by Lemma 2.7 we have

Ext p
∆S(QX

,F•)
∼=−→ Ext p(Q

X
,
�

Fp ⊗ sgnp+1

�Sp+1).

2.2 Spaces admitting symmetric (semi)simplicial filtration

A particular subclass of ∆injS-objects deserves special attention simply because of the
sheer number of examples that fit into it (see the examples in the introduction). Let
M and {Xn}n∈N be spaces, X :=

∐

Xn, and e a positive integer. Recall that Sp denotes
the symmetric group on p elements. For an element σ ∈ Sp we let σ denote the auto-
morphism on M p induced by permuting the factors. For any space X , let idX denote the
identity map on X .

Definition 2.10. We say that {Xn}n∈N admits a symmetric semisimplicial filtration by
M with filter gap e > 0, if for all 0 ≤ i ≤ p ≤ n

e there are proper finite morphisms called
the face maps:

fi : M p+1 × Xn−e(p+1)→ M p × Xn−ep,

satisfying the following axioms:

13
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i. (Semisimplicial identity) For all i < j the following hold:

fi ◦ f j = f j−1 ◦ fi (2.3)

ii. (Symmetric condition) Given σ ∈ Sp+1 and x ∈ Xn−e(p+1) and for each i ≥ 0, there
exists a unique di(σ) ∈ Sp and x ′ ∈ Xn−ep such that

fi

�

σ(t0, · · · , tp), x
�

= di(σ) fσ−1(i)
�

(t0, · · · , tp), x ′
�

i.e. the following diagram commutes:

M p+1 × Xn−e(p+1) M p × Xn−ep

M p+1 × Xn−e(p+1) M p × Xn−ep

fi

σ×idXn−e(p+1) di(σ)×idXn−ep

fσ−1(i)

(2.4)

iii. (Equalizer condition) Let

πp : M p+1 × Xn−e(p+1)→ Xn

be defined by

πp := f0 ◦ f1 ◦ · · · ◦ fp−1 ◦ fp.

If (z0, x0), . . . , (zp, xp) ∈ M × Xn−e are such that f0(zi , x i) = f0(z j , x j) = x for some
x ∈ Xn and all 0≤ i ≤ j ≤ p, then there exists a unique y ∈ Xn−e(p+1) such that

πp((z0, . . . , zp), y) = x . (2.5)

iv. (Embedding condition) For all z ∈ M the morphisms

f0(z, ) : Xn−e→ Xn (2.6)

are closed embeddings (in the relevant category).

We call
Un := Xn − f0(M × Xn−e)

the space of M -indecomposables,

j : Un→ Xn

denoting the corresponding open embedding. �

Recall from the introduction that X =
∐

n Xn. We abuse notation and use j to denote the
open embedding U :=

∐

Un → X as well. Now observe that the first two axioms imply
that X is a module over the graded commutative monoid Sym M , where M has grading e
and X is naturally graded by n. The first two conditions also naturally make T•, defined
by

Tp := M p+1 × X ,

14
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a ∆injS space. Note that for each p the space Tp is naturally graded by n, and for each n
we can define T•,n to be the nth graded piece of T• i.e. for each n we have:

T•,n :∆injS→ Spaces

[p] 7→ M p+1 × Xn−e(p+1).

Indeed, the commutative diagram (2.4) is precisely a restatement of the face relations in
Lemma 2.7 (compare it with commutative diagram (2.2)) once we put the face maps fi
of Definition 2.10 in place of f T

i in Lemma 2.6.
Let F be a Q-sheaf on X and let Fn denote its restriction to Xn, where, recall that Q

is either Q, the rational numbers or Q` the `-adic rationals. 3 Observe that for all p ≥ 0
and each n, the sheaves πp∗π

∗
pFn are equipped with the permutation action of Sp+1. It is

easy to see that T•,n being an S•,inj-space for each n implies that πp∗π
∗
pF is an S•,inj-sheaf.

As before, let πp∗π
∗
pF ⊗ sgnp+1 denote the sheaf πp∗π

∗
pF with the permutation action of

Sp+1 twisted by a sign. Taking its coinvariants under Sp+1 we get a complex given by

C p(F ) := (πp∗π
∗
pF ⊗ sgnp+1)

Sp+1 .

The face maps fi in Definition 2.10 induce face maps on the cosimplicial sheaf π•∗π
∗
•F ,

which we denote by f ∗i . The differentials in this complex are given by the alternating
sum of the face maps f ∗i on π•∗π

∗
•F , like we had for Lemma 2.6, i.e.

d : C p(F )→ C p+1(F )

by
d :=

∑

i

(−1)i f ∗i

resulting in a complex of sheaves on Xn given by C•(F ). Note that we can define the
complex C•(Fn) exactly the same way and

C•(F ) =
⊕

n
C•(Fn).

Our next lemma is the sheaf-theoretic analogue of Theorem 1 and is the key step
towards proving it.

Lemma 2.11. Let X =
∐

n Xn admit a symmetric semisimplicial filtration by M. Let e > 0
be the filter gap and U =

∐

n Un be the space of M-indecomposables, and let j : U → X
denote the open embedding. For each n ∈ N the complex (C•(F ), d), which reads as

0→ j! j∗F →F → π0∗π
∗
0F → (π1∗π

∗
1F ⊗ sgn2)

S2 · · · →

· · · → (πp∗π
∗
pF ⊗ sgnp+1)

Sp+1 → ·· · (2.7)

is exact.
3Note that in the case of étale cohomology with Q` coefficients, what one really does is start with sheaves

of Z/`nZ-modules, and then one takes the profinite completion, which is then followed by tensoring with
Q`. In our case, technically, for `-adic cohomology, the chain complexes should be of abelian sheaves of
Z/`nZ-modules, the subsequent steps of going from Z/`nZ-coefficients to Q` well-known and is covered on
any standard text on étale cohomology, and the interested reader is referred to, for example, [Milne80] and
the references therein.
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In particular, plugging in F = QX and restricting to Xn, the complex (C•(QXn
), d) is the

following exact sequence of sheaves:

0→ j! j∗Q
Un
→ Q

Xn
→ π0∗QT0

→ (π1∗QT1
⊗ sgn2)

S2 · · · →

· · · → (πp∗QTp
⊗ sgnp+1)

Sp+1 → ·· · (2.8)

Proof. We give two proofs of (2.7): one using the fact that C•(Fn) is a∆injS
op-sheaf, and

the other, in the case F = Q
X

(which is the case we would actually need to prove our
theorems) involves essentially checking by hand that (2.8) is exact at the level of stalks.

Method 1: Note that for each n, π•∗π
∗
•Fn is a ∆op

inj-sheaf

C p(Fn) = (πp∗π
∗
pFn ⊗ sgnp+1)

Sp+1

for all p ≥ 0. Let

F : Fun(∆S, ShQ(Xn))→ Fun(∆injS, ShQ(Xn))

denote the forgetful functor taking symmetric cosimplicial objects to symmet-
ric cosemisimplicial ones forgetting degeneracies, and let

F ′ : Fun(∆injS, ShQ(Xn))→ Fun(∆S, ShQ(Xn))

denote its left adjoint, called freely adding degeneracies. We abuse notation
and use F and F ′ to denote similar functors for ∆op and ∆op

inj sheaves as well.

The∆injS
op sheafπ•∗π

∗
•F gives us a∆Sop sheaf F ′

�

π•∗π
∗
•F
�

by ‘freely adding

degeneracies’. In turn, the cohomology Hn
�

C•(F )
�

is isomorphic to the co-
homology of the complex whose terms are given by

�

F ′
�

πp∗π
∗
pF
�

⊗ sgnp+1

�Sp+1
,

because freely adding degeneracies do not change the cohomology (freely
adding degeneracies is a (homotopy) left Kan extension, and thus preserves
homotopy colimits; paired with Dold-Kan, we obtain that it preserves coho-
mology). By Lemma 2.8, this is isomorphic to

Ext n
∆

�

Q
Xn

, F ′
�

π•∗π
∗
•F
�

�

where we consider the underlying simplicial structure of the∆Sop-sheaf F ′
�

π•∗π
∗
•F
�

,
and that in turn is isomorphic to cohomology of the corresponding ∆op

inj-sheaf

Ext n
∆

�

Q
Xn

,π•∗π
∗
•F
�

,

and they vanish, because for each n

T•,n→ Xn − Un

is proper (in fact finite, because the face maps are finite) and surjective, and
thus admits cohomological descent (see [Del75, 5.3.5(II)]), which completes
the proof.
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Method 2: Now, if x ∈ Un then the stalks of j! j∗Q
Xn
= j!QUn

, and Q
Xn

, both are one

dimensional Q-vector spaces each, and the sheaves πp∗QTp
have stalk 0 at x ,

because x /∈ πp(Tp), for all p ≥ 0.

So for the rest of the proof we fix x ∈ Xn − Un. Let

π−1
0 (x) = {(m0,∗), · · · , (mr ,∗)} ⊂ M × Xn−e

where ∗ denotes not-necessarily-equal elements of Xn−e, which we will not
keep track of. Then, first note that

�

j! j∗Q
Xn

�

x =
�

j!QUn

�

x = 0

and
�

πp∗QTp

�

x = 0

for all p > r. So we only have to compute
�

πp∗QTp

�

x for 0 ≤ p ≤ r. Now, the

stalk of π0∗QT0
at x is a Q-vector space spanned by a (multi)set indexed by

π−1
0 (x), so

�

π0∗QT0

�

x
∼= Q〈m0, . . . , mr〉.

Likewise,
�

π1∗QT1

�

x is a Q-vector space spanned by the (multi)set

f −1
0 (π

−1
0 (x))

∐

f −1
1 (π

−1
0 (x))

where
f0, f1 : M2 × Xn−2e→ M × Xn−e

are the face maps; note that the following (multi)sets have the same elements:

f −1
1 (π

−1
0 (x)) = f −1

0 (π
−1
0 (x)) = {(mi , m j ,∗)}0≤i, j≤r

and these are nonempty by (2.5) in the Equalizer condition of Definition 2.10.
For convenience we write tuples of elements of M ‘multiplicatively’, as ele-
ments of the tensor algebra T M :=

∐

M n, which is an associative graded
monoid. By this notation,

�

π1∗QT1

�

x
∼= Q〈mim j : 0≤ i, j ≤ r〉.

The symmetric group S2 acts by swapping the mi and m j , therefore

�

π1∗QT1
⊗ sgn2

�S2

x
∼= Q{(mi , m j)}0≤i< j≤r

∼= Q{mi ∧m j : 0≤ i < j ≤ r}.

Continuing this way, keeping track of the preimages of x under π0 followed
by various face maps, we get that for all p ≤ r, the vector space

�

πp∗QTp

�

x is

isomorphic to a Q-vector space spanned by

{mi0 · . . . ·mip)}0≤i0,...,ip≤r ,
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and therefore
�

πp∗QTp
⊗ sgnp+1

�Sp+1

x
∼= Q{(mi0 ∧ . . .∧mip) : 0≤ i0 < . . .< ip ≤ r}

Having computed the stalks of the terms in (2.8), we now compute the differ-
ential, which are given by alternating sum of the face maps. The differential

�

Q
Xn

�

x →
�

π0∗QT0

�

x

is given by
f ∗0 (x) =

∑

mi .

The differential
�

π0∗QT0

�

x →
�

π1∗QT1
⊗ sgn2

�S2

x

is given by f ∗0 − f ∗1 , where f0, f1 are the two face maps from T1→ T0. Noting
that

f ∗0 (mi) =
∑

j

m j ∧mi

and
f ∗1 (mi) = mi ∧

∑

j

m j

we see that

f ∗0 − f ∗1 :
�

π0∗QT0

�

x →
�

π1∗QT1
⊗ sgn2

�S2

x

mi 7→ 2(
∑

j

m j)∧mi .

The same proof applies to show that the differentials are all

∗ ∧
∑

mi .

At the level of stalks (2.8) reads as:

0→ Q
∧(
∑

mi)−−−−→ Q{m0, . . . , mr}
∧(
∑

mi)−−−−→ Q{(mi ∧m j)}0≤i< j≤r}
∧(
∑

mi)−−−−→ · · ·

· · ·
∧(
∑

mi)−−−−→ Q{(mi0 ∧ . . .∧mip) : 0≤ i0 < . . .< ip ≤ r} → · · ·

· · ·
∧(
∑

mi)−−−−→ Q{m0 ∧ · · · ∧mr}
∧(
∑

mi)−−−−→ 0

which is a Koszul complex and thus exact.

Remark 2.12. The reason for giving a proof of Lemma 2.11 that exploits only the ∆injS
structure without appealing to the module structure of X over Sym M is that the lemma holds
even when a ∆injS or ∆S object does not satisfy all the axioms of Definition 2.10- evidence
at hand is the proof of Theorem 3, Subsection 3.4 and Theorem 5 in Section 4. For example,
the space of (global algebraic/holomorphic) sections of a gr

d on a smooth projective curve
does not satisfy the axioms of Definition 2.10; and yet, there’s a natural ∆S-space that is
homotopy equivalent (in the appropriate category) to the locus of sections with singularities,
and a version of Lemma 2.11 is the key step towards computing the cohomology of the moduli
space of smooth sections of a gr

d .
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Recall our notations and conventions: Q denotes Q, the field of rational numbers, or
Q`, the field of `-adic numbers as the situation dictates. For any space X (recall that by
space we mean locally compact Hausdorff topological space or a quasi-projective alge-
braic variety over some field), we let H∗c (X ;Q) denote the étale cohomology with proper
supports with coefficients in Q` if X is a quasi-projective algebraic variety, or singular
cohomology with compact support with Q coefficients if X is a topological space. Now,
we prove theorems 1 and 2.

Proof of Theorem 1. Plugging in Fn = Q
Xn

, we know from Lemma 2.11 that C•(Q
Xn
) is

a resolution of j!QUn
. Taking cohomology with compact supports we obtain a spectral

sequence which reads as

Ep,q
1 = Hq

c

�

Xn,
�

πp−1∗QTp−1
⊗ sgnp

�Sp
�

=
�

Hq
c (M

p × Xn−ep;Q)⊗ sgnp

�Sp

where we define T−1 := Xn and S0 to be the trivial group. 4 Applying the Kunneth formula
gives:

Ep,q
1 =

⊕

l+m=q

�

H l
c(M

p;Q)⊗ sgnp

�Sp ⊗Hm
c (Xn−ep;Q).

Note (for example from [Mac62]) that for α,β ∈ H∗c (M ;Q) we have

αβ − (−1)deg (α)deg (β)+1βα= 0

when taking invariants under the alternating action of Sp i.e.

�

H∗c (M ;Q)⊗p ⊗ sgnp

�Sp
= H∗c (M ;Q)⊗p/{αβ − (−1)deg (α)deg (β)+1βα= 0}.

Therefore,

Ep,q
1 =

⊕

l+m=q

⊕

i+ j=p

�

Sym iHodd
c (M ;Q)⊗∧ jHeven

c (M ;Q)
�(l) ⊗Hm

c (Xn−ep;Q).

In the algebraic setting, when all spaces are quasi-projective varieties over a field K , since
the face maps are all algebraic morphisms, this spectral sequence is that of Gal(K/K)
representations.

Proof of Theorem 2. As before we plug in Fn = Q
Xn

to obtain the complex

j!QUn
,→ C•(Q

Xn
)

and it is exact in the category ShQ(Xn) thanks to Lemma 2.11. Let

τ : Xn→ pt

be the structure map to a point and let

τp := πp ◦τ : Tp→ pt

4We deviate from the standard convention here: for an augmented (semi)simplicial space T• → T , the
notation T−1 denotes the space T . So if we followed the standard convention T−1, in our case, should have
been Xn − Un, but instead, for convenience, we deviate from what’s standard and define T−1 = Xn.

19



FILTRATION OF COHOMOLOGY VIA SYMMETRIC SEMISIMPLICIAL SPACES

denote the respective structure maps for all p. We take the global Verdier dual (note that
since Xn is a smooth orientable manifold or a smooth projective variety, j : Un ,→ Xn
being open, Un is the same) and focus on the resulting complex

RHom
�

C•(Q
Xn
),Q

Xn

�

.

With the naive filtration on the columns of this complex we get a second quadrant E1-page
spectral sequence that reads as:

E−p,q
1 = Extq

�

(πp−1∗QTp−1
⊗ sgnp)

Sp ,Q
Xn

�

=⇒ Hq+p(Un;Q). (2.9)

Define N := dimR(Xn) if Xn is a smooth orientable manifold, or N := 2 dimK(Xn) if Xn is a
smooth projective variety over an algebraically closed field K . Recall , from the statement
of Theorem 2, that

c(n, p) := 2
�

dimK Xn − dimK Tp−1

�

.

Now we compute the E−p,q
1 terms by going through the following sequence of steps:

(i) First note that–

Extq(πp−1∗QTp−1
,Q

Xn
) = Extq−N (πp−1∗QTp−1

,Q
Xn
[N]) adjusting shifts,

= Extq−N (πp−1!
Q

Tp−1
,Q

Xn
[N]) πp−1 finite, πp−1∗ = πp−1!

,

= Extq−N (Q
Tp−1

,π!
p−1Q

Xn
[N]) (πp−1!

,π!
p−1) adjoint pair,

= Extq−N (Q
Tp−1

,π!
p−1τ

!Q
pt
) Xn smooth, QXn

[N] = τ!Q
pt

,

= Extq−N (Q
Tp−1

,τ!
p−1Q

pt
) τp−1 = τ ◦πp−1,

= Extq−N (Q
Tp−1

,Q
Tp−1
[N − c(n, p)]) Tp−1 smooth and

Q
Tp−1
[N − c(n, p)] = τ!

p−1Q
pt

,

= Extq−c(n,p)(Q
Tp−1

,Q
Tp−1
) adjusting shifts,

= Hq−c(n,p)(Tp−1,Q).

(ii) Now plug this in (2.9) we get that

E−p,q
1 = Extq

�

(πp−1∗QTp−1
⊗ sgnp)

Sp ,Q
Xn

�

=
�

Hq−c(n,p)(Tp−1,Q)⊗ sgnp

�Sp

=
�

Hq−c(n,p)(M p × Xn−ep,Q)⊗ sgnp

�Sp .

Applying the Künneth formula on the last expression above, and following the steps
from the proof of Theorem 1 thereafter, we obtain the spectral sequence of Theorem
2.
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3 Computing cohomology of some spaces admitting symmetric semisimplicial fil-
tration

In this section we study, in further detail, the impact of Theorem 1 on the examples of
semisimplicially filtered spaces presented in the introduction. All the examples we see
in this section are well-known and well-studied by various other methods. However, our
Verdier-Deligne inspired approach unifies all of these examples under one framework
(which is the property of admitting a symmetric semisimplicial filtration). This, to the
best of my knowledge, is new.

3.1 Unordered configuration spaces

We elaborate on Example 1 from the introduction. Recall that X is space, and we define
a family of spaces Xn := Sym nX for all n ∈ N. Also recall the face maps from (1.3):

fi : X p+1 × Sym n−2(p+1)X → X p × Sym n−2pX
�

(a0, . . . , ap), {b1, . . . , bn−2(p+1)}
�

7→
�

(a0, . . . , âi , . . . , ap), {ai , ai , b1, . . . , bn−2(p+1)}
�

where âi means ai , the (i+1)th factor, removed. That the face maps satisfy all the axioms
from Definition 2.10, with UConf n(X ) as the space of X -indecomposables and e = 2 as
the filter gap, is almost immediate. Therefore, plugging in M = X and e = 2 in Theorem
1, the spectral sequence from (1.1) reads as:

Corollary 6. Let X be a locally compact Hausdorff topological space. Then there exists a
spectral sequence

Ep,q
1 =

⊕

i+ j=p

⊕

l+m=q

�

Sym iHodd
c (X ;Q)⊗Λ jHeven

c (X ;Q)
�(l)
⊗Hm

c (Sym n−2pX ;Q)

=⇒ H p+q
c (UConf nX ;Q). (3.1)

where the differentials are given by alternating sum of the pullbacks on cohomology induced
by the face maps:

dp,q
1 : Ep,q

1 → Ep+1,q
1

dp,q
1 :=

p−1
∑

i=0

(−1)i f ∗i .

with differentials given by the alternating sum of the pullbacks on cohomology with compact
supports induced by the face maps:

�

(α1 · · ·αi)⊗ (β1 ∧ · · · ∧ β j)
�

⊗
�

(β ′1 · · ·β
′
j′)⊗ (α

′
1 ∧ · · · ∧α

′
i′)
�

7→
∑

1≤r<s≤i′
(−1)r+s

�

(α1 · · ·αi(α
′
r +α

′
s))⊗ (β1 ∧ · · · ∧ β j)

�

⊗
�

(β ′1 · · ·β
′
j′)⊗ (α

′
1 ∧ · · · ∧cα′r · · · ∧ Òα′s ∧ · · ·α

′
i′)
�

where i + j = p, i′ + j′ = n− 2p and

α1, . . . ,αi ,α
′
1, . . . ,α′i′ ∈ Hodd

c (X )

and
β1, . . . ,β j ,β

′
1, . . . ,β ′j′ ∈ Heven

c (X ).
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In the particular case when X = C, the complex numbers, the family Xn can be in-
terpreted as the space of all monic polynomials of degree n over C, which we denote by
(C[x])n. The face maps can be rewritten in terms of multiplication of polynomials:

fi : Cp+1 × (C[x])n−2(p+1)→ Cp × (C[x])n−2p
�

(a0, . . . , ap), P(x)
�

7→
�

(a0, . . . , âi , . . . , ap), (x − ai)
2P(x)

�

(3.2)

As before, UConf n(C), the subspace of square-free polynomials is the space ofC-indecomposables.
Then Corollary 6 (3.1)gives us:

Ep,q
1 =

⊕

l+m=q

⊕

i+ j=p

�

Sym iHodd
c (C;Q)⊗Λ jHeven

c (C;Q)
�(l) ⊗Hm

c (Sym n−2pC;Q)

=⇒ H p+q
c (UConf n(C);Q) (3.3)

Noting that H2
c (C;Q) = Q and H i

c(C;Q) = 0 for i 6= 2, the only non-zero terms in the
spectral sequence (1.3) when X = C are:

E0,2n
1
∼= E1,2n−2

1
∼=Q.

We thus obtain

H i
c(UConf n(C);Q) =

¨

Q i = 2n, 2n− 1

0 otherwise.
(3.4)

Our result, via Poincaré duality, agrees with prior computations of H∗(UConf n(C);Q)
(see e.g. [Arn69], [Chu12]). Of course one could have also replaced the question of
computing H∗c (UConf n(C);Q) by H∗c,é t(UConf n(A

1);Q`) over a field K , in which case the
second half of Theorem 1 gives us the desired answer.

3.2 (Tuples of) polynomials with specified multiplicity of common roots

In the paper [FW16], Farb and Wolfson studied the moduli space Polyn,r+1
v which, over a

field K , they defined as

Polyn,r+1
v := {(g0, . . . , gr) : gi ∈ K[z] monic of degree n, such that g0, . . . , gr

have no common root over K with multiplicity ≥ v}

When v = 1, this is the well-known moduli space of morphisms P1 → Pr of degree n
that take∞∈ P1 to [1 : . . . : 1] ∈ Pr . Note that when v > n the condition of having v
common roots is empty.

In [FW16] they compute H∗(Polyn,r+1
ν (C);Q) (as well as work out some interesting

arithmetic and geometric refinements via comparison theorems) by studying the spaces
over C and making use of a beautiful technique of Segal’s– that of ‘bringing zeroes in
from infinity’ (see [Seg79]). In this paper, instead of using Segal’s ‘bringing zeroes from
infinity’ technique, we give a strictly algebraic proof. Let us elaborate.

We fix an algebraically closed field K . Let Polyn,r+1 be the space of all (r + 1)-tuples
polynomials of degree n; therefore Polyn,r+1 ∼= A(n)(r+1). Let us define, for all p ≥ 0,
spaces (complex manifolds when K = C, smooth schemes of finite type over K that care
actually defined over Z):

Tp = {(z0, . . . , zp), (g0, . . . , gr) : if z j occurs λ j times, then (z − z j)
λ j v divide gi

for all 0≤ i ≤ r, 0≤ j ≤ p}.
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It immediately follows that by T• is a symmetric semisimplicial space. In fact, by Defini-
tion 2.5 Polyn,r+1 admits a symmetric semisimplicial filtration by A1 with filter gap e = v.
Indeed, for all p we have an isomorphism

Tp→ (A1)p+1 × Polyn−pv,r+1

(z0, . . . , zp), (g0, . . . , gr) 7→ (z0, . . . , zp),

�

g0
�

(z − z0) . . . (z − zp)
�v , . . . ,

gr
�

(z − z0) . . . (z − zp)
�v

�

,

and the face maps are finite morphisms given by

fi : Tp→ Tp−1

(z0, . . . , zp), (g0, . . . , gr) 7→ (z0, . . . , bzi , . . . , zp), (g0, . . . , gr).

or equivalently,

fi : (A1)p+1 × Polyn−(p+1)v,r+1→ (A1)p × Polyn−pv,r+1

(z0, . . . , zp), (h0, . . . , hr) 7→ (z0, . . . , bzi , . . . , zp), ((z − zi)
vh0, . . . , (z − zi)

vhr).

Plugging M = A1 and Xn = Polyn,r+1, and in Theorem 1 we obtain a spectral sequence
which reads as:

Ep,q
1 =

�

Hq
c (A

p × Polyn−pv,r+1)⊗ sgnp

�Sp =⇒ H p+q
c (Polyn,r+1

v ), (3.5)

(where, for any Z-scheme S, we mean Hq
c (S) to stand for both Hq

c (S(C);Q) as well as
Hq

ét,c(S/K ;Q`), ` coprime to char K). Just like in the proof of Theorem 1, by [Mac62] we

know that the only values of p for which Ep,q
1 is nonzero are p = 0, 1; indeed

H∗
�

((A1)p)⊗ sgnp

�Sp ∼=

¨

H0(A1) p = 1

0 otherwise.

Therefore the terms in the spectral sequence 3.5 becomes

Ep,q
1 =











H2n(r+1)
c (Polyn,r+1) (p, q) = (0,2n(r + 1))

H2(n−v)(r+1)+1
c (A1 × Polyn−v,r+1) (p, q) = (1,2(n− v)(r + 1) + 1)

0 otherwise

∼=

¨

Q (p, q) = (0,2n(r + 1)), (1,2(n− v)(r + 1) + 1)
0 otherwise.

Clearly the spectral sequence degenerates on the E1 page and we obtain the following:

Corollary 7. Over C we have:

H i(Polyn,r+1
v ;Q)∼=

¨

Q i = 0,2v(r + 1)− 3

0 otherwise
,

and we have an isomorphism of Gal(Fq/Fq)- representations:

H i(Polyn,r+1
v (Fq);Q`)∼=











Q`(0) i = 0

Q`((v − n)(r + 1)− 1) i = 2v(r + 1)− 3

0 otherwise

,

thus recovering the cohomology part of Farb-Wolfson’s [FW16, Theorem 1.2], and in
the special case of v = 1 this an algebro-geometric and arithmetic analogue of Segal’s
[Seg79, Propositions 1.1 and 1.2].

23



FILTRATION OF COHOMOLOGY VIA SYMMETRIC SEMISIMPLICIAL SPACES

3.3 Moduli space of degree n morphisms P1→ Pr .

We continue working on the algebraically closed field K fixed in the previous example. As
mentioned, a special case of the previous example is that of the moduli space of degree n
based maps P1→ Pr . Now we consider the moduli space of non-based of degree n maps
P1→ Pr and prove Corollary 4. Note that even though Corollary 4 follows from Theorem
3, which considers maps from a genus g smooth projective curve for g ≥ 0 (which will be
proved in the next section), past literature supports that it’s worth to work out the case
g = 0 for itself.

Proof of Corollary 4. For r ≥ 1 define

Γn(r) :=
¦

(s0, . . . , sr) : si ∈ Γ (P1,OP1(n))
©

,

where OP1(1) is the ‘hyperplane bundle’ or invertible sheaf given by the sections of the
universal bundle on P1, and let

OP1(n) := OP1(1)⊗n.

Elements of Γ (P1,OP1(n)) can be thought of as homogenous polynomials of degree n in
two variables x , y; in particular, Γn(r) ∼= A(r+1)(n+1). An element (s0, . . . , sr) ∈ Γn(r) hav-
ing no common roots on P1 (which will often phrase as: (s0, . . . , sr) is basepoint free, not
to be confused with (non)based maps discussed above) defines a (unique, up to multipli-
cation by Gm = K×) map:

P1→ Pr

z 7→ [s0(z) : . . . : sr(z)].

Conversely, any map P1 → Pr of degree n is given by a basepoint free (r + 1)-tuple of
sections (s0, . . . , sr) ∈ Γn(r). We say that an element [s0 : . . . : sr] ∈ PΓn(r) is basepoint
free if (s0, . . . , sr) ∈ Γn(r) is. Let the locus of the basepoint free elements of PΓn(r) be
denoted by Morn(P1,Pr); i.e.

Morn(P1,Pr); := {[s0 : . . . : sr] : >[a : b] ∈ P1 such that si([a : b]) = 0 for all i};

parts of literature also call it the Hurwitz space of degree n morphisms P1 → Pr .5 Let
Zn(r) := Γn(r)−Morn(P1,Pr); be the discriminant locus i.e.

Zn(r) := {[s0 : . . . : sr] : ∃[a : b] ∈ P1 such that si([a : b]) = 0 for all i}.

Note that Zn(r) is defined over Z; indeed, it’s cut out by polynomials in PΓn(r) defined
over Z. In turn Un(r) is defined over Z.

We apply Theorem 2 to compute H∗(Morn(P1,Pr)) by plugging in Xn := PΓn(r) and
showing it admits a semisimplicial filtration by P1, with the space of topological P1- in-
decomposables being Morn(P1,Pr) and the filter gap e = 1. To begin, note that for each
p we have face maps given by adding a basepoint:

fi : (P1)p+1 × Xn−(p+1)→ (P1)p × Xn−p
�

[a0 : b0], . . . , [ap : bp]
�

, [s0 : . . . : sr] 7→
�

[a0, b0], . . . , ̂[ai : bi], . . . [ap : bp]
�

, [(bi x − ai y)s0 : . . . : (bi x − ai y)sr] (3.6)

5The study of Hurwitz spaces is deep and vast, and is of interest in algebraic geometry (see e.g. [ACG11]
and the references therein), topology (see [DE96]), and number theory (problems of the inverse Galois type,
see [EVW16] and the references therein).
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In other words, the hypercover under consideration is the following:

· · · · · · (P1)3 × PΓn−3(r)
→→→ (P

1)2 × PΓn−2(r)⇒P1 × PΓn−1(r)→ PΓn(r)

with the unlabelled arrows denoting the face maps fi . It is almost immediate that the
face maps satisfy all the conditions from Definition 2.10 with M = P1 and Xn = PΓn(r).
Plugging them in Theorem 2, we obtain a second quadrant spectral sequence which reads
as

E−p,q
1 =



















Hq(PΓn(r))(0) p = 0,

Hq−2r(P1 × PΓn−1(r))(−1) p = 1,

H0(P1)⊗H2(P1)⊗Hq−4r−2(PΓn−2(r))(−2) p = 2,

0 otherwise,

with the differentials given by the alternating sum of the Gysin pushforwards induced by
the face maps, which is what we shall compute now.

• Computing d1,q
1 : E−1,q

1 → E0,q
1 .

For simplicity we denote the differential by d1
1 . Let

ι : PΓn−1(r) ,→ PΓn(r)

denote the inclusion given by adding a basepoint. Choose generators 1 ∈ H0(P1)
and e ∈ H2(P1), and let h denote the hyperplane class in PΓn(r). Then we claim
that:

d1
1 = f0∗ : H∗−2r(P1 × PΓn−1(r))→ H∗(PΓn(r))

1⊗ ι∗α+ e⊗ ι∗α′ 7→ αhr +α′hr+1

is a map of H∗(PΓn(r))-modules, where α,α′ ∈ H∗(PΓn(r)). To see this, first note
that

ι∗ : H∗(PΓn(r))→ H∗(PΓn−1(r))

is a surjection (note that even though the map ι depends on the choice of a base-
point, the induced map on cohomology does not); next, the image of the funda-
mental class

[P1 × PΓn−1(r)] ∈ H0(P1 × PΓn−1(r))

is the locus of elements in PΓn(r) that has a basepoint i.e. Zn(r), which is rationally
equivalent, and thus cohomologous, to (a nonzero scalar multiple of) hr ; and finally,
for a fixed point [a : b] ∈ P1, the locus given by

{[s0 : . . . : sr] ∈ PΓn(r) : si([a : b]) = 0}

is rationally equivalent, and in turn cohomologous, to (a nonzero scalar multiple
of) hr+1. For the sake of simplicity we won’t bother ourselves with the scalar mul-
tiples, which is fine because we’re working over Q (see Remark 3.1 for a detailed
computation justifying why disregarding the scalars is alright).

The Gysin pushforward d1
1 = f0∗ surjects onto the ideal generated by hr in H∗(PΓn(r)).

Indeed,

d1
1 (1⊗ ι

∗hi) = hr+i = d1
1 (e⊗ ι

∗hi−1) for i ≥ 1 (3.7)

d1
1 ([P

1 × PΓn−1(r)]) = hr , (3.8)
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which shows that the image of d1
1 is the ideal generated by hr in H∗(PΓn(r)). The

kernel of d1
1 is given by elements of the form (h− e)⊗ ι∗(α) for all α ∈ H∗(PΓn(r)).

Again, recalling that ι∗ : H∗(PΓn(r)) → H∗(PΓn−1(r)) is a surjection, we conclude
that Kernel(d1

1 ) is generated by elements of the form

(h− e)⊗ β , β ∈ H∗(PΓn−1(r)).

The upshot is that on the E2 page, for p = 0 we have:

E0,q
2 =

¨

Q(0) q = 2 j, 0≤ j ≤ 2(r − 1)
0 otherwise.

(3.9)

• Computing d2,q
1 : E−2,q

1 → E−1,q
1 .

For simplicity, we denote the differential by d2
1 . Like before, let

ι : PΓn−2(r) ,→ PΓn−1(r)

denote the inclusion given by adding a basepoint, and let h denote the hyperplane
class in PΓn−1(r). Let us also keep in mind, like before, that

ι∗ : H∗(PΓn−1(r))→ H∗(PΓn−2(r))

is a surjection. Then the way we computed f0∗ above works verbatim, and we have

f0∗ : H0(P1)⊗H2(P1)⊗H∗−2r−2(PΓn−2(r))→ H∗(P1 × Γn−1(r))

1⊗ e⊗ ι∗α 7→ e⊗αhr

and

f1∗ : H0(P1)⊗H2(P1)⊗H∗−2r−2(PΓn−2(r))→ H∗(P1 × PΓn−1(r))

1⊗ e⊗ ι∗α 7→ 1⊗αhr+1,

and therefore

d2
1 (1⊗ e⊗ ι∗α) = 1⊗αhr+1 − e⊗αhr = (h− e)⊗αhr . (3.10)

Note that d2
1 is injective, and the image is generated by hr in H∗(P1 × PΓn−1(r)).

Consequently, on the E2 page we have:

E−1,q
2 =

¨

Q(−r) p = 1, q = 2 j + 2r + 2, 0≤ j ≤ 2(r − 1)
0 otherwise

,

E−2,q
2 = 0, for all q.

In effect, all differentials vanish on the E2 page; the spectral sequence degenerates and
we obtain

H∗(Morn(P1,Pr);Q)∼=
Q[h]

hr
⊗∧Q{t}

where h has cohomological degree 2, and t (which corresponds to e − h ∈ Ker(d1
1 )) has

cohomological degree 2r + 1. Furthermore, over a field κ, with algebraic closure κ, we
have an isomorphism of Gal(κ/κ)-representations:
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H i
ét(Un(r);Q`) =











Q`(− j) i = 2 j, 0≤ j ≤ r − 1

Q`(−( j + 1)) i = 2 j + 1, r ≤ j ≤ 2r − 1

0 otherwise.

This completes our proof of Corollary 4.

Remark 3.1. The astute reader would note that the nonzero scalars change the formula
for the differentials, but it is not difficult to check that all the important conclusions hold.
Indeed, if

ι∗([P1 × PΓn−1(r)]) = λ0hr

and
ι∗([PΓn−1(r)]) = λ1hr+1,

where λ0 and λ1 are nonzero scalars, then (3.7) becomes:

d1
1 (1⊗

1
λ0
ι∗hi) = hr+i = d1

1 (e⊗
1
λ1
ι∗hi−1).

Thus, Kernel(d1
1 ) is generated by elements of the form

(
h
λ0
−

e
λ1
)⊗ β , β ∈ H∗(PΓn−1(r)).

Likewise, one can check that (3.10) reads as:

d2
1 (1⊗ e⊗ ι∗α) = λ11⊗αhr+1 −λ0e⊗αhr = (λ1h−λ0e)⊗αhr ,

in turn Kernel(d1
1 )/Image(d2

1 ) is generated by hr , i.e. the rest of the proof stays exactly the
same, and the conclusion, thus, holds.

3.4 Moduli space of degree n morphisms C → Pr , g(C)≥ 0.

When g = 0, we have C ∼= P1 and we discussed it above. Now, let C be a fixed smooth
projective curve of genus g where g ≥ 0, and fix a positive integer r. We compute the
(stable) cohomology of the moduli space Morn(C ,Pr) of degree n morphisms C → Pr .

A degree n morphism C → Pr is equivalent to the following data:

• a line bundle L of degree n on C ,

• an (r + 1)-tuple (s0, . . . , sr) where si ∈ H0(C , L)

• the sections s0, . . . , sr satisfy the condition that they have no common zeroes (also
known as {s0, . . . , sr} is basepoint free).

Then, Morn(C ,Pr) is a Zariski open dense subset of the smooth projective variety Xn
defined by

Xn := {L, [s0 : . . . : sr] : L ∈ Picn(C), si ∈ H0(C , L) for all i}. (3.11)
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When n ≥ 2g (for g ≥ 2, even n ≥ 2g − 1 works for our purposes), by the Riemann-
Roch theorem dim H0(C , L) = n − g + 1 for all L ∈ Picn(C), and Xn, in turn, is isomor-
phic to the projectivization of a vector bundle En on Picn(C) whose fibres are isomorphic
to A(n−g+1)(r+1). To elaborate, let P(n) be a Poincaré line bundle for C of degree n (see
[ACGH07, Chapter IV, Section 2] for the definition of a Poincaré line bundle and its prop-
erties) and let

νn : C × Picn(C)→ Picn(C)

be the projection to the second factor. Then for each n≥ 2g −1 we have a vector bundle

En = νn∗P(n)→ Picn(C),

with the fibre over a point [L] ∈ Picn(C) being
�

En

�

L = H0(C , L)∼= An−g+1,

and then Xn can be equivalently described as:

ρn : Xn = PE r+1
n → Picn(C)

where E r+1
n is the (r + 1)-fold fibre product of En over Picn(C). We show that Xn admits

symmetric semisimplicial filtration by C with filter gap e = 1, and use Theorem 2 to
compute H i(Morn(C ,Pr);Q) for i ≤ n− 2g + 1.

Some notations before we start proving Theorem 3: we suppress the coefficient field
and just write H∗(X ) to stand for H∗(X ;Q) until we come to the point where we have
keep track of weights, and in particular, the necessary Tate twists.

PROOF OUTLINE: Because the proof is somewhat involved, we split the proof into
several parts which we outline before we begin the proof.

(i) Fixing n>> 2g, we construct a S•-object T• over the space Xn, and write a complex
of sheaves just as (2.8) from Lemma 2.11.

(ii) We use Lemma 2.11 to construct a spectral sequence like in Theorem 2, and compute
the terms E−p,q

1 of that (second-quadrant) spectral sequence for 0≤ p ≤ n− 2g.

(iii) We compute the differentials on the E1 page in the range 0 ≤ p ≤ n− 2g + 1 and
deduce the E2 terms.

(iv) We show that E−p,q
2 = E−p,q

∞ for 0≤ p ≤ n− 2g.

Proof of Theorem 3. Fix n>> 2g.

Step 1. Construct a S•-object T• and write the complex (2.8). Define

T0 := {L, [s0 : · · · : sr], x : si ∈ Γ (C , L) for all i, L ∈ PicnC , div(s j)≥ x for all 0≤ j ≤ r},

and note that the finite morphism

T0→ Xn

L, [s0 : · · · : sr], x 7→ L, [s0 : · · · : sr]

given by forgetting x i.e. the common zeros of the sections, shows that T0 is a
resolution of singularities of the resultant= 0 locus in Xn (T0 is smooth, the map
to Xn is finite, thus a normalization of Xn).
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Now for p ≥ 1 define

Tp := T
×Xn (p+1)
0 − {all diagonals}.

Therefore

Tp = {[s0 : · · · : sr], (x0, · · · , xp) : div(s j)≥
p
∑

i=0

x i for all 0≤ j ≤ r}.

Claim 3.2. For p ≤ n− 2g − 1 we have an isomorphism

C (p+1) × PE r+1
n−(p+1)→ Tp.

Before proving the claim we first need to study the geometry of PE r+1
n and how

adding a basepoint works. To this end, observe that an equivalent description
of PEn is that it is the space of all effective divisors on C of degree n. Indeed,
the fibre of the map PEn → Picn(C) over OC(D) ∈ Picn(C) is the complete linear
system of all effective divisors D′ of degree n that are rationally equivalent to D
(often written as D′ ∼ D), and

{D′ : D′ is effective of degree n, D′ ∼ D}= PH0(C ,O (D)).

In turn, for each x ∈ C , we have a commutative diagram:

PEn−1 PEn

Picn−1(C) Picn(C)

teff
x

tx

where

teff
x : C × PEn−1→ PEn

x , D 7→ x + D

is the map of adding a point x on effective divisors, and

t x : Picn−1(C)
∼=−→ Picn(C)

x ,OC(D) 7→ OC(x + D)

is the translation by x map on the Picard group, which is naturally an isomor-
phism. Now observe that teff

x is a relative linear embedding of PEn−1 in PEn
as schemes over Picn(C) ∼= t x(Picn−1(C)). This is because of the following. A
Poincaré bundle P(n−1) is νn−1-relatively very ample when n−1≥ 2g because
it is fibrewise very ample for the proper map

νn−1 : C × Picn−1(C)→ Picn(C)

(see [Laz04, Chapter 1, Section 1.7] or [Gro61, Section 4.7.1]). Therefore the
relative evaluation map of locally free sheaves on C × Picn−1(C):

evx×Picn−1(C) : ν∗n−1νn−1∗P(n− 1)→OC×Picn−1C
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is surjective and the kernel, which is a locally free sheaf, is a relative hyperplane
bundle in PEn and is the image teff

x (PEn−1) by definition. All this is to conclude
that the addition by x map on the space of effective divisors has a natural ‘lift’ to
a map of adding a point x on the vector bundle En−1:

tglob
x : En−1→ En

and in turn it results in a similar addition by x map on PE r+1
n−1 as follows:

PE r+1
n−1 PE r+1

n

Picn−1(C) Picn(C)

t r
x

tx

where we have

t r
x : PE r+1

n−1→ PE
r+1
n

[s0 : . . . : sr] 7→ [tglob
x (s0) : . . . : tglob

x (sr)].

Going through the whole drill above for all x ∈ C , one gets a natural addition
map

C × PE r+1
n−1 PE r+1

n

C × Picn−1(C) Picn(C)

A

Arat

where

A : C × PE r+1
n−1→ PE

r+1
n (3.12)

x ,
�

L, [s0 : . . . : sr]
�

7→
�

L ⊗OC(x), t r
x

�

[s0 : . . . : sr]
�

�

is, just like in the case of C = P1 in the previous example, adding a basepoint, and
where

Arat : C × Picn−1(C)→ Picn(C)

is the addition map on rational equivalence classes of divisors i.e.

Arat(x ,OC(D)) = OC(x + D)

and the image A(C × PE r+1
n−1) is precisely given by

�

L, [s0 : . . . , sr] : L ∈ Picn(C), si ∈ H0(C , L), s0, . . . , sr have a common zero
	

.

Observe that the map A is equally well-defined as adding a basepoint A : C ×
PE r+1

m → PE r+1
m+1 for all m ≥ 2g; in what follows we abuse notation and use A to

denote the map of adding a basepoint for any m, i.e. no matter the degree of the
effective divisors under consideration.

Note that the adding a basepoint maps, even though defined set-theoretically, are
radiciel maps (they are injective on the C-points) and in fact it is easy to check
that they are closed embeddings.
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Proof of Claim 3.2. For simplicity, we first show that there is an isomorphism

C × PE r+1
n−1→ T0.

To this end note that the map

C × PE r+1
n−1→ T0

x , L, [s0 : · · · : sr] 7→ A
�

x , L, [s0 : · · · : sr]
�

, x

where A is defined as in (3.12) is, by the very definition of A, an isomorphism. For
higher values of p, the isomorphism is dictated by the (p+1)-fold composition of
A; indeed, it is easy to check that (and therefore left to the reader) the following
map is an isomorphism:

C (p+1) × PE r+1
n−(p+1)→ Tp

(x0, · · · , xp), L, [s0 : · · · : sr] 7→ A(p+1)
�

(x0, · · · , xp), L, [s0 : · · · : sr]
�

, (x0, · · · , xp),

where Ap+1 := A◦ · · · ◦ A
︸ ︷︷ ︸

p+1

and the bound on p is merely dictated by Riemann-

Roch.

The rest of the proof essentially follows that of the case of C = P1 from the
previous example. Note that T•, which is naturally a S•-object, is equipped with
face maps that have a concrete geometric definition as adding a basepoint when
n− (p+ 1)≥ 2g:

fi : C p+1 × PE r+1
n−(p+1)→ C p × PE r+1

n−p

(x0, . . . , xp),
�

L, [s0 : . . . : sr]
�

7→ (x0, . . . , x̂ i , . . . , xp),
�

L ⊗OC(x i), t r
x[s0 : . . . : sr]

�

i.e. the i th face map is just the map A using the i th copy of C , with identity on
the remaining copies of C , and in fact f0 = A. For convenience in keeping track
of degrees, we define T−1 := Xn.

Therefore by Lemma 2.11 we have a complex of sheaves ofQ-vector spaces given
by:

j!QUn
→QXn

→ π0∗QT0
→
�

π1∗QT1
⊗ sgn2

�S2
→ . . .→

�

πp∗QTp
⊗ sgnp+1

�Sp+1 → . . .

(3.13)

where, recall that Un = Morn(C ,Pr) is the moduli space of degree n morphisms
C → Pr , which is an open dense subset of Xn, and that the takeaway from Claim
3.2 is the geometry (and in particular, the cohomology) of the spaces Tp appear-
ing in the complex above for −1≤ p ≤ n− 2g.

Remark 3.3. One might wonder why the face maps, given by adding basepoints,
do not give Xn the structure of admitting symmetric semi-simplicial filtration- the
reason is Riemann-Roch; where the roots of Brill-Neother theory lie. Intuitively
speaking, Xn can be thought of as admitting symmetric simplicial filtration but only
up to a degree of n− 2g; it’s only to that degree that the face maps of T• admit the
geometric description of adding a basepoint (see Claim 3.2). This complication of
geometric nature can be, nevertheless, quite easily bypassed, if one’s goal is to com-
pute stable cohomology, as demonstrated by the final step of the proof of Theorem
3.
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Step 2. Mimic the proof of Theorem 2 and compute the E1 terms. Taking RΓ (−,ωXn
) of

(3.13) we obtain a spectral sequence (of MHS):

E−p,q
1 =⇒ Hq+p(Morn(C ,Pr))

where, for n− p ≥ 2g, the E−p,q
1 terms read as:

E−p,q
1 = Hq−2pr

�

(C × PE r+1
n−p)⊗ sgnp

�Sp(−pr) (3.14)

where we keep a record of the Tate twists (given by, for each p, the codimension
of Tp−1 in the geometric realization of T•) to keep track of the Hodge structures,
and where the differentials are given by the alternating sum of the Gysin push-
forwards induced by the face maps. To this end note that by [Mac62] we know
that:

�

H∗(C)⊗p ⊗ sgnp

�Sp ∼= H0(C)⊗ Sym p−1H1(C)
⊕

H2(C)⊗ Sym p−1H1(C)
⊕

H0(C)⊗H2(C)⊗ Sym p−2H1(C)
⊕

Sym pH1(C). (3.15)

To have a complete understanding of H∗(PE r+1
n ) for all n≥ 2g we need to know

the Chern classes of E r+1
n . For r = 0 we have E1

n = En and the Chern classes of
En can be computed for example, directly using Grothendieck-Riemann-Roch, or
via ad-hoc methods to give us

ci(En) = (−1)i
θ i

i!
i = 0, . . . , g

where θ is the fundamental class of the theta divisor (several proofs are available
in [ACGH07, Sections 4, 5, Chapter VII and Section 1, Chapter VIII]). Using the
Whitney sum formula we obtain the Chern classes of E r+1

n :

ci(E
r+1
n ) =

∑

0≤i0,...,ir≤g
0.i0+1.i1+2.i2+...+rir=i

(−1)i
θ i

i0! . . . ir !

= (−1)i
�

r + i
i

�

θ i

i!
.

In turn, let N0 := (n− g + 1)(r + 1), the dimension of the fibres of

E r+1
n → Picn(C),

and let h denote the relative hyperplane class i.e.

h= c1(Oρn
(1)) ∈ H2(PE r+1

n ),

then H∗(PE r+1
n ), which is an algebra on

H∗(Picn(C))∼= ∧(H1(C)),
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is given by

H∗(PE r+1
n )∼=

H∗(Picn(C))[h]
hN0 +ρ∗nc1(E r+1

n )hN0−1 + . . .+ρ∗ncg(E r+1
n )hN0−g

. (3.16)

Let p be such that n− p ≥ 2g and let

Np := (n− p− g + 1)(r + 1) = N0 − p(r + 1),

the dimension of the fibres of E r+1
n−p → Picn−p(C), then combining (3.15) and

(3.16) we have a complete description of the E1 terms of the spectral sequence
above. We note here that since n− p ≥ 2g, we have that

Np − g = (n− p− g + 1)(r + 1)− g > r.

This observation will be useful later.

Step 3. Computing the differentials dp
1 : E−p,∗

1 → E−(p−1),∗+2r
1 .

Following previously introduced notations, let h = c1(Oρn
(1)), and for all p sat-

isfying n− p ≥ 2g, let
ι : PE r+1

n−p→ PE
r+1
n−(p+1)

denote the closed embedding induced by adding a basepoint x (an abuse of nota-
tion that won’t cause any confusion down the way) i.e. ι = t r

x for a chosen x ∈ C .
Note that ι is fibrewise a linear embedding, up to translation of Picn−p(C) by x .
Finally, let e ∈ H2(C) be the class of a point, 1 the fundamental class of C , and let
c1, . . . , c2g be the standard basis of H1(C) and because H∗(Picn(C)) ∼= ∧H1(C),
let c1, . . . , c2g be the image of c1, . . . , c2g under the aforementioned isomorphism.

First, we observe that

d1
1 : H∗(C × PE r+1

n−1)→ H∗(PE r+1
n )

[C × PE r+1
n−1] 7→ hr

e 7→ hr+1

ci 7→ cih
r , for all i.

is a map of H∗(PE r+1
n )-modules, and in turn

ι∗α+ eι∗β +
2g
∑

i=1

ciι
∗γi

d1
17−→ αhr + βhr+1 +

2g
∑

i=1

ciγih
r ,

where α,β ,γ1, . . . ,γ2g ∈ H∗(PE r+1
n ). Indeed, the justification for the formula for

d1
1 in the previous case of C = P1 holds almost verbatim here. We know

ι∗ : H∗(PE r+1
n )→ H∗(PE r+1

n−1)

is a surjection; next, for a fixed point x ∈ C , the image t r
x(PE

r+1
n−1) is rationally

equivalent, and in turn cohomologous, to (a multiple of) hr+1, and finally, that
the image of the fundamental class [C × PE r+1

n−1] ∈ H0(C × PE r+1
n−1) is rationally

equivalent, and thus cohomologous, to (a scalar multiple of) hr , can be seen as in
the following way. Recall that a Poincaré bundle P(n) is νn-relatively very ample
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for all n≥ 2g, which in turn induces a relative embedding of C ×Picn(C)
in−→ PEn

over Picn(C) i.e.

C × Picn(C) PEn

Picn(C)

in

νn

which, over a point [L] ∈ Picn(C) is merely an embedding of C ,→ P(H0(C , L)∗)
under the complete linear system of L. Now, PEn is linearly embedded in PE r+1

n
over Picn(C), and let in still denote the composition

C × Picn(C)
in
,−→ PEn ,→ PE r+1

n ,

which makes in(C × Picn(C)) in PE r+1
n homologous to (a scalar multiple of) the

Poincaré dual of h ∈ H2(PE r+1
n ) In turn, the image of the [C × PE r+1

n−1] under the
Gysin map f0∗ is given by

f0∗
�

[C × PE r+1
n−1]

�

= hr+1 _ in(C × Picn(C))

= hr .

Yet again, for the sake of simplicity we won’t bother ourselves with the scalar
multiples, which is fine because we use cohomology with Q coefficients.6 Noting
that

ci(e− h)− h(ci − ci) = cie− cih− hci + hci = cie− cih,

it is now easy to check that the kernel of d1
1 is given by:

H∗(PE r+1
n−1)(e− h)[2r]

⊕

1≤i≤2g

H∗(PE r+1
n−1)(ci − ci)[2r], (i = 1, . . . , 2g)

where [2r] denotes a shift in the cohomological degree by 2r, and which is
viewed as a ι∗H∗(PE r+1

n )∼= H∗(PE r+1
n−1)-module. The cokernel of d1

1 , which forms
E0,∗

2 is given by
H∗(Picn(C))[h]

hr

(where note that, as observed before r < N0 − g, see (3.16)).

Now we work out the differential for p = 2 by computing the Gysin pushforwards
by each of the face maps:

f0∗(1⊗ e) = ehr , f1∗(1⊗ e) = hr+1 =⇒ d2
1 (1⊗ e) = (e− h)hr ,

f0∗(e⊗ ci) = cih
r+1, f1∗(e⊗ ci) = ecih

r =⇒ d2
1 (e⊗ ci) = (cih− eci)h

r ,

f0∗(1⊗ ci) = cih
r , f1∗(1⊗ ci) = cih

r =⇒ d2
1 (1⊗ ci) = (ci − ci)h

r ,

d2
1 (cic j) = 0,

6The interested reader can follow the directions provided in Remark 3.1 to check that taking the scalars
into account do not change the rest of the proof, and thus, the result.
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where the last equality follows from the fact that on Sym pH1(C) for p ≥ 2, the
alternating sum of face maps is, by definition, 0. Recalling our earlier remark
that r < N1− g, we see that the E−1,∗

2 terms, as an H∗(PE r+1
n−2)-module, are given

by:

H∗(Picn−1(C))(−r)[h]
hr

(e− h)[2r]

⊕

1≤i≤2g

H∗(Picn−1(C))(−r)[h]
hr

(ci − ci)[2r].

Whereas the kernel of d2
1 is generated by exactly what one expects: as a H∗(PE r+1

n−2)-
module, we have

Ker(d2
1 ) =

⊕

1≤i≤2g

H∗(PE r+1
n−2)

�

e⊗ ci − 1⊗ cih+ 1⊗ eci

�

[4r]

⊕

1≤i, j≤2g

H∗(PE r+1
n−2)(cic j)[4r].

For p = 3 we have d3
1 : E−3,∗

1 → E−2,∗
1 given by:

d3
1 (1⊗ e⊗ ci) = e⊗ cih

r − 1⊗ cih
r+1 + 1⊗ ecih

r ⇐=











f0∗(1⊗ e⊗ ci) = e⊗ cih
r ,

f1∗(1⊗ e⊗ ci) = 1⊗ cih
r+1

f2∗(1⊗ e⊗ ci) = 1⊗ ecih
r

d3
1 (e⊗ cic j) = cic jh

r+1,

d3
1 (1⊗ cic j) = cic jh

r ,

d3
1 (cic jck) = 0,

where, for the last three equalities, recall again that on Sym pH1(C) for p ≥ 2,
the alternating sum of face maps is, by definition, 0. Therefore the E−2,∗

1 terms
defined by Ker(d2

1 )/Image(d3
1 ) is given by:

⊕

1≤i≤2g

H∗(Picn−2(C);Q(−2r))[h]
hr

�

e⊗ ci − 1⊗ cih+ 1⊗ eci

�

[4r]

⊕

1≤i, j≤2g

H∗(Picn−2(C);Q(−2r))[h]
hr

(cic j)[4r].

The formula for the differentials in the case of p ≥ 3 mimics that of p = 3, and
we have:

1⊗ e⊗ c1 . . . cp−2 7→
�

(e⊗ c1 . . . cp−2)− (1⊗ c1 . . . cp−2)h
�

hr ,

e⊗ c1 . . . cp−1 7→ c1 . . . cp−1hr+1,

1⊗ c1 . . . cp−1 7→ c1 . . . cp−1hr

c1 . . . cp 7→ 0
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It is now easy to check that

Ker(dp
1 )/Image(dp+1

1 )

=
⊕

1≤i≤2g

H∗(Picn−p(C))(−pr)[h]
hr

�

e⊗ c1 . . . cp−1 − 1⊗ c1 . . . cp−1

�

[2pr]

⊕

1≤i, j≤2g

H∗(Picn−p(C))(−pr)[h]
hr

(c1 . . . cp)[2pr].

Step 4. Analysing the E2 page to show E−p,q
2 = E−p,∞

2 for 0≤ p ≤ n− 2g.

That the differentials on the E2 page vanish for p ≤ n − 2g follow simply from
weight considerations- the space T• consists of smooth projective varieties and
thus their nth cohomology is pure of weight n. Now observe the following: from
Lemma 2.11 we have an equality

RΓc(PE r+1
n , C•(QPE r+1

n
)) = RΓc(PE r+1

n , j!QMorn(C ,Pr ))

in the derived category of constructible sheaves over PE r+1
n , where C•(QPE r+1

n
)

denotes the complex in (2.8), with Xn := PE r+1
n ; on the other hand, for any

N ∈ N we have

RiΓc(PE r+1
n , C•(QPE r+1

n
))∼= RiΓc(PE r+1

n , C•(QPE r+1
n
)/τ≥N C•(QPE r+1

n
)

for all i ≥ 2(r+1)−2N , where τ≥N C•(QPE r+1
n
) denotes the truncated complex up

to the (N − 1) term and this is because τ≥N C•(QPE r+1
n
) is supported on complex

codimension N in PE r+1
n . Therefore the cohomology of Morn(C ,Pr) up to degree

n− 2g is solely dictated by the E2 page. To this end, let

t := (e− h)

which has degree (−1, 2r + 2) and let

αi := ci − ci , i = 1, . . . , 2g

which has degree (−1, 2r+1). Clearly for 3≤ p ≤ n−2g, the element tαi1 . . .αip ,
which is of degree (−(p+ 1), 2r + 2+ p(2r + 1)), when expanded, gives us

tαi1 . . .αip

= (e− h)(ci1 − ci1) . . . (cip − cip)

= (e− h)
p
∏

j=1

ci j
+
¦

lower order terms as a polynomial on ci1 , . . . , cip

©

= (e− h)
p
∏

j=1

ci j

because the lower order terms are all 0 in
�

H2(C)⊕H0(C)
�
⊗

Sym pH1(C)⊗H∗(Picn−(p+1)(C))[h]/hr ,
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thanks to the alternating action of Sp+1.

On the other hand αi1 . . .αip+1
, which is of degree (−(p + 1), (p + 1)(2r + 1)),

when expanded, gives us

αi1 . . .αip+1

= (ci1 − ci1) . . . (cip+1
− cip+1

)

=
p+1
∏

j=1

ci j
+
¦

lower order terms as a polynomial on ci1 , . . . , cip+1

©

=
p+1
∏

j=1

ci j

because again, the lower order terms are all 0 for the exact same reason cited
above.

Now as for p = 2, we have

tαi = (e− h)(ci − ci) = eci − cih+ eci + hci

= eci − cih+ eci

because the alternating action of S2 kills H0(C2)⊗ H∗(PE r+1
n ), and in turn, hci .

This give us the algebra structure on the E2 page for p ≤ n−2g and thus completes
the proof of Theorem 3.

4 Moduli space of smooth sections of gr
d on a smooth projective curve

Le X be a smooth projective curve over C of genus g. A line bundle L on X of degree d
is called m-very ample if for every effective divisor ξ ∈ X of degree m+ 1, the evaluation
map

evξ : H0(X , L)→ H0(X , L ⊗Oξ)

is surjective, or equivalently, if dim H0(X , L ⊗ O (−ξ)) = dim H0(X , L) − (m + 1). More
generally, we have the following well-known definition.

Definition 4.1. If V is a linear series of type gr
d on X , i.e. V ⊂ H0(X , L) of rank r +1, for

some line bundle L of degree d on X , then we say V is m-very ample if for every effective
divisor ξ ∈ X of degree m+ 1, we have that

dimV (−ξ) = r + 1− (m+ 1)

where V (−ξ) := H0(X , L ⊗O (−ξ))∩V .

Note that thanks to the short exact sequence

0→ L ⊗O (−ξ)→ L→ L ⊗Oξ→ 0,

where Oξ denotes the skyscraper sheaf supported on ξ, we have the following long exact
sequence:

0→ H0(X , L ⊗O (−ξ))→ H0(X , L)
evξ
−→ H0(X , L ⊗Oξ)→ ·· · ,
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so H0(X , L ⊗O (−ξ))∩V ⊂ H0(X , L). Therefore, 0-very ampleness is the same as global
generation and 1-very ampleness is our usual notion of very ampleness. For m ≥ 2, the
m-very ampleness of V is equivalent to saying that the image of X under the embedding
induced by V i.e.

φV : X ,→ P(V ∗)
x 7→ [s0(x) : . . . : sr(x)]

(where s0, . . . , sr is a basis of V as a C-vector space), has no (m+1)-secant (m−1)-plane
(note that the existence of an (m+1)-secant (m−1)-plane is special, because the expected
dimension of a (m+1)-secant plane m, i.e. the span of (m+1) points on φV (X ) ⊂ P(V ∗)
is m for a general set of m+1 points; a wonderful reference for this is [ACGH07, Chapter
VIII]).

In this section we are interested in the (stable) cohomology of the moduli space of
smooth sections of an m-very ample gr

d . We will soon see that the stability comes from
the ‘extent’ or degree of very ampleness (see Lemma 4.3).

Remark 4.2. Unsurprisingly, there is no necessary and sufficient condition for a linear sys-
tem to be m-very ample that is solely determined by the parameters g, r and d. However,
there are various estimates on m, some of which give necessary, and some sufficient conditions
for when a gr

d is m-very ample.

• For sufficient conditions, Farkas, in [Far08], says that given a general genus g smooth
projective curve X , if we have the following inequality

ρ(g, r, d)− (r −m+ 2) +m≤ 0

where ρ(g, r, d) := g − (r +1)(g − d + r) is the Brill-Noether number (see [ACGH07,
Section 1, Chapter IV]) then there exists a gr

d that is m-very ample.

• In the same paper, Farkas states a series of inequalities in Theorem 0.5, which, when
simultaneously satisfied, provide sufficient conditions for the existence of a gr

d that is
not m-very ample.

• In [ACGH07, Chapter VIII], for V ⊂ H0(X , L) a gr
d , they compute the virtual fun-

damental class of the degeneracy loci of the evaluation map of the following vector
bundles on Sym mX :

V × Sym mX EL

Sym mX

ev

where the stalks of the vector bundle EL is at a point ξ ∈ Sym mX is given by

(EL)ξ = H0(X , L/L(−ξ)).

Note that the degeneracy loci being empty corresponds to V being m-very ample. In
theory, one can deduce inequalities involving g, r, d and m for which the virtual fun-
damental class is empty, as Farkas does in [Far08], for most purposes, the formula is
extremely complicated and unyielding.
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The vector space V ⊂ H0(X , L) contains, as a Zariski open dense subvariety, the locus
of smooth sections V ◦, i.e.

V ◦ := {s ∈ V : >x ∈ X such that vx(s)≥ 2}

where vx(s) denotes the order of vanishing of s at x .
Geometrically, when V is m-very ample with m≥ 1, the image of X under the induced

embedding φV : X → P(V ∗) is a smooth projective curve of degree d and up to C∗ an
element of V ◦ determines, and is determined by, a hyperplane in P(V ∗) that intersects
φV (X ) smoothly i.e. at exactly d distinct points.

Our goal, now, is to compute the (stable) cohomology H∗(V ◦;Q).

Proof of Theorem 5. We fix V , an m-very ample gr
d for the rest of this section.

Step 1. Construction of a S•-object T•.

First we construct a ∆S object in the category of schemes augmented on the
‘discriminant locus’ Z := V −V ◦. Define

T0 := {(s, x) : s ∈ V , vx(s)≥ 2}

i.e. T0 is the normalisation of the discriminant locus Z; indeed T0 is smooth,

π0 : T0→ Z

(s, x) 7→ s

is a finite surjective morphism, and an isomorphism over a Zariski open dense
subset of T0 given by the locus of sections which are singular at exactly one point
in X . Now for p ≥ 0 define

Tp := T×Z (p+1)
0 − {all diagonals}

where T×Z (p+1)
0 is the (p+1)-fold fibre product over Z , and for convenience that

will be clear later, we set
T−1 := V ,

(deviating from the standard texts that define T−1 to be Z .) Equivalently, for
p ≥ 0, we have

Tp =
¦

(s, (x0, . . . , xp)) : div(s)≥ 2
∑

x i

©

where div(s) denotes the divisor of s ∈ V .

Henceforth, unless otherwise mentioned, we use T• to mean the semisimplicial
space Tp≥0. Clearly T•→ Z is a symmetric semisimplicial object augmented over
Z , with face maps corresponding to forgetting one of the factors of X :

f i : Tp→ Tp−1

s, (x0, . . . , xp) 7→ s, (x0, . . . ,Òx i , . . . , xp)
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which are all finite morphisms, and for all permutations σ0, . . . ,σp of 0, . . . , p
under the action of Sp, we define

πp := f σ0 ◦ . . . ◦ f σp : Tp→ Z

s, (x0, . . . , xp) 7→ s.

For simplicity we abuse notation and denote, for all p ≥ 0, the composition

Tp

πp
−→ Z

ι
,−→ V

by πp as well, instead of ι◦πp. On the other hand, for all p ≥ 0 we have the other
projection map:

ψp : Tp→ X p+1

s, (x0, . . . , xp) 7→ (x0, . . . , xp);

this will be particularly useful in the next step.

Step 2. Geometry of Tp.

For each p ≥ 0, define a vector bundle Ep → X p+1 as follows (a similar con-
struction is followed in [ACGH07, Chapter IV, Section 2] over Sym p+1X ). Let
D(p+ 1) ⊂ X × X p+1 be defined by

D(p+ 1) := {x , (x0, . . . , xp) : x = x i for some 0≤ i ≤ p},

and let pr j , for j = 1, 2 denote, respectively, the projection to the first factor X
and the second factor X p+1. Then

Ep := pr2∗(O2D(p+1) ⊗ pr∗1 L).

is a locally free sheaf (because, pr∗1 L is locally free and 2D(p+1) being flat over
X p+1 imply O2D(p+1) ⊗ pr∗1 L is also flat) and equivalently a vector bundle, with
stalks given by

�

Ep

�

x = H0(X , L ⊗O2ξ(x))

where for all x ∈ X p+1 we define ξ(x) to be the corresponding unordered (p+1)-
tuple. We will often abuse notation and denote an divisor by ξ when there is no
scope of confusion.

The natural map of sheaves given by restriction

pr∗1 L→O2D(p+1) ⊗ pr∗1 L

induces a map on pushforwards called the evaluation map

ev : pr2∗pr∗1 L = H0(X , L)⊗OX p+1 → Ep,

where H0(X , L) ⊗ OX p+1 is the trivial bundle on X p+1 with fibres H0(X , L). Re-
stricting this to V ⊂ H0(X , L) gives us the map

ev : V ⊗OX p+1 → Ep+1.
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At the level of stalks, one obtains the map

V → H0(X , L ⊗O2ξ(x)),

the kernel of which is precisely V (−2ξ(x)). Indeed, for any divisor ξ on X , we
have a short exact sequence of locally free sheaves on X :

0→ L(−2ξ)→ L→ L ⊗O2ξ→ 0

that induces a long exact sequence of cohomology

0→ H0(X , L(−2ξ))→ H0(X , L)→ H0(X , L ⊗O2ξ)→ . . .

and taking intersection with V gives us that at the level of stalks

Kernel
�

(evx) : V → H0(X , L ⊗O2ξ(x))
�

= V (−2ξ(x)).

And now note that we have the following diagram:

Tp V × X p+1 Ep

X p+1

ψp

ev

where, by definition, ψp : Tp → X p+1 is the kernel of the evaluation map. Now
observe that by the very definition of m-very ampleness (see Definition 4.1), we
obtain the following:

Lemma 4.3 (Stable bound for cohomology). For each 0≤ p ≤ m+1
2 , we have

ψp : Tp→ X p+1

is a vector bundle with the fibre over a point (x0, . . . , xp) ∈ X p+1 given by

ψ−1(x0, . . . , xp) = V (−2ξ(x0, . . . , xp))∼= Cr+1−2(p+1).

Step 3. Constructing a spectral sequence for the semisimplicial object T•.

Let j : V ◦ ,→ V denote the inclusion. Then by Lemma 2.11 we have an acylic
complex of sheaves of Q-vector spaces on V given by:

j!QV ◦ →QV → π0∗QT0
→
�

π1∗QT1
⊗ sgn2

�S2
→ . . .→

�

πp∗QTp
⊗ sgnp+1

�Sp+1 → . . .

Let C• denote the complex

QV → π0∗QT0
→
�

π1∗QT1
⊗ sgn2

�S2
→ . . . .

Let us define T−1 = V , and π−1 := idT−1
, the identity map on T−1. Taking RΓc of

the complex C• one obtains a spectral sequence that reads as

Ep,q
1 = RqΓc

�

V ,
�

πp−1∗QTp−1

�Sp
�

=⇒ Rp+qΓc(V , j!QV ◦) (4.1)

41



FILTRATION OF COHOMOLOGY VIA SYMMETRIC SEMISIMPLICIAL SPACES

On the right hand side, we have

Rp+qΓc(V , j!QV ◦) = H p+q
c (V ◦;Q).

To simplify the Ep,q
1 terms we go through the following steps:

RqΓc

�

V ,
�

πp−1∗QTp−1

�Sp
�

=
�

Hq
c (Tp−1)⊗ sgnp

�Sp
(−p) (πp finite)

∼=
�

Hq
c (X

p ×Cr+1−2p)⊗ sgnp

�Sp
(−p) (for all p ≤

m
2,

by Lemma 4.3)

∼=



















H2
c (X )⊗ Sym p−1H1

c (X )(−p), q = 2(r + 1)− 3p+ 1

H0
c (X )⊗H2

c (X )⊗ Sym p−2H1
c (X )(−p)

⊕

Sym pH1
c (X )(−p), q = 2(r + 1)− 3p

H0
c (X )⊗ Sym p−1H1

c (X )(−p), q = 2(r + 1)− 3p− 1

0, q otherwise

where the last step comes from the Macdonald’s result on the permutation action
of the symmetric group Sp (twisted by the sign representation) on the cohomol-
ogy H∗(X )⊗p (see [Mac62]).

Now observe the following: from Lemma 2.11 we have an equality RΓc(V , C•) =
RΓc(V , j!Q◦V ) in the derived category of constructible sheaves over V ; on the
other hand, for any N ∈ N we have

RiΓc(V , C•)∼= RiΓc(V , C•/τ≥N C•)

for all i ≥ 2(r + 1)− 2N , where τ≥N C• denotes the truncated complex up to the
(N −1) term and this is because τ≥N C• is supported on complex codimension N
in V .

This observation, paired with Poincaré duality H i
c(V

◦;Q) ∼= H2(r+1)−i(V ◦;Q)
gives us that for all i ≤ m−1

2 :

H i(V ◦;Q)∼=

¨

Sym p−2H1(X ;Q)(−(p− 1))⊕ Sym pH1(X ;Q)(−p) i = 2p

Sym p−1H1(X ;Q)(−(p− 1))⊕ Sym pH1(X ;Q)(−(p+ 1)) i = 2p+ 1
(4.2)

which completes the proof of Theorem 5.
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