
GEAR PROBLEMS IN SKEIN THEORY

CHARLES FROHMAN

This collection of problems is divided into four parts. The first part
consists of exercises focused on deriving formulas in noncommutative
algebra by induction. These would be a good starting place for gradu-
ate students. The second problem is open ended. Can you detect the
geometry of a Sol manifold that is a mapping cylinder of an Anosov
map of the torus from the asymptotics of the quantum hyperbolic in-
variants. The third problem set is to prove theorems about noncom-
mutative tori that are in analogy with theorems that have been proved
about the skein algebra. The fourth problem set are open problems in
the theory of the Kauffman bracket skein algebra.

I want to thank Daniel Douglas for going through the exercises and
figuring out how they worked, and helping me correct typos.

1. Formulas

These all work by induction. The first two are really elementary.
The second two are useful formulas in the Kauffman bracket skein
algebra, that are still pretty straightforward but require you to imagine
diagrams.

1.1. The quantum binomial theorem. Let q ∈ C − {0, 1}. The
quantum integer l, denoted [l] is defined as,

[l] =
ql − q−l

q − q−1
.

The quantum factorial is defined recursively by [0]! = 1, and [n]! =
[n][n− 1]!. The quantum binomial coefficients are defined by[

n
k

]
=

[n]!

[k]![n− k]!
.

Suppose that T is an associative algebra and A,B ∈ T that satisfy
AB = q2BA.

Exercise 1. Prove that

(A+B)n =
n∑
k=0

q−k(n−k)
[
n
k

]
AkBn−k.

1



2 CHARLES FROHMAN

1.2. Chebyshev iteration. Recall that the Chebyshev polynomi-
als of the first kind Tk(x) are defined by T0(x) = 2, T1(x) = x
and Tk(x) = xTk−1(x) − Tk−2(x). The Chebyshev polynomials of
the second kind are defined by s0(x) = 1, s1(x) = x and sk(x) =
xsk−1(x)− sk−2(x).

Exercise 2. • Prove that for k ≥ 2, Tk(x) = sk(x)− sk−2(x).
• Prove that for all k, l ∈ N, Tk(x)Tl(x) = Tk+l(x) + T|k−l|(x).
• Prove that if q ∈ C− {0} then Tk(q + q−1) = qk + q−k.
• Prove that for all k, l ∈ N, Tk(Tl(x)) = Tkl(x).

1.3. Identities in the Kauffman bracket skein module. We will
work with relative skeins. A relative skein module also includes strips
[0, 1] × [0, 1] that are embedded in M so that [0, 1] × [0, 1] ∩ ∂M =
{0, 1} × [0, 1]. Here we work with ambient isotopy relative to ∂M
Each strip has a preferred side. Remember that in an oriented 3-
manifold the orientation of a 2-dimensional submanifold is determined
by a nonvanishing normal vector. Giving [0, 1] × [0, 1] the product
orientation, the preferred side of the strip is the side the normal vector
points to. We use the Kauffman bracket skein relations on relative
skeins, making sure that in the ball where the skein relation takes
place, the preferred side of all strips is up.

If M = F × [0, 1] we can project all skeins to F . We assume that
relative skeins have their boundaries in ∂F × [0, 1] so that the bound-
ary is a horizontal arc with it’s preferred side up. That way we can
represent skeins by diagrams with the blackboard framing in F , up to
isotopy, the second and third Reidemeister moves and the move that
locally flips monogons from one side to another without changing the
local writhe. The simple diagrams are the ones with no crossings and
no simple loops, and they form a basis for the relative skein module.

Let Ann = S1 × [0, 1]. It is easy to see that KN(Ann) is isomorphic
to C[x] where x is the framed link coming from the blackboard framing
of the core of the annulus. Hence 1, x, x2, . . . is a basis for KN(Ann). A
simple analysis of leading terms means that the Tk(x) are also a basis.
If L ⊂M is framed link, the result of replacing each component of L by
Tk(x) where x is the core of the particular annulus is called threading
L with Tk. We denote it by Tk(L).

The identity Tk(q+q−1) = qk+q−k has an analog in the relative skein
of the annulus. The skein sk is called the k-th spiral. It is the result
of giving the blackboard framing to the diagram consisting of a single
arc, having boundary {−1} × {0, 1} that spirals around the annulus
k-times. If k is positive it spirals counterclockwise and if k is negative
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Figure 1. Two spirals

then it spirals clockwise. It intersects the arc {i} × [0, 1] transversely,
and without bigons in k points. In Figure 1.3 we show s1 and s−1.

Exercise 3. Prove Tk(x)∗s0 = qksk+q−ks−k, and s0∗Tk(x) = q−ksk+
qks−k.

Let S1× [0, 1]× [0, 1] be the solid torus viewed as a cylinder over the
annulus. Choose two arcs in the vertical boundary and consider the
relative Kauffman bracket skein module with respect to those arcs. We
just draw the core of the diagrams involved, and assume that they are
framed parallel to the sheet of paper. If we place an integer on a closed
component then we mean that it is threaded with the corresponding
Chebyshev polynomial of the second kind.

Up to isotopy there are exactly two relative skeins with no closed
components and the blackboard framing, we call them ε0 and ε1. The
skein ε0 is the one that goes the short way around.

The skein module is an algebra under stacking. We let 1 denote the
empty skein and x denote the core of the annulus with the blackboard
framing. As a vector over C it is spanned by 1, x, x2, . . .. However
we could also thread the core with the Chebyshev polynomials of the
second kind, s0(x) = 1, s1(x) = x and sn(x) = x ∗ sn−1(x) − sn−2 and
still have a basis.

The relative skein module is a module over the absolute skein module,
and as such it is the direct sum of two cyclic modules generated by
ε0 and ε1. To avoid many diagrams we use this fact to symbolically
represent elements of the relative skein module. For instance ε0 ∗ sn(x)
is
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n

.

The goal of the exercise is to expand the skein cn shown below

n

in terms of our basis of the module and algebra.

Exercise 4.

cn =
n−1∑
i=0

q−2(q2i+2 − q−2i−2)εn−isi(x) + q2nεosn(x).

Here, we interpret the subscript of εn−i to be a residue class mod 2.
The proof may require that you derive the analogous identity involving
ε1.

2. Invariants of Anosov mapping classes of the torus

Recall that the torus is T 2 = S1 × S1 ⊂ C × C where we view S1

as the unit circle. If

(
a b
c d

)
∈ SL2Z then it defines an orientation

preserving diffeomorphism of the torus by

(1) Ta b
c d

(z, w) = (zawc, zbwd).

Every orientation preserving self homeomorphism of S1×S1 is isotopic
to a Ta b

c d

. We say the mapping Ta b
c d

 is Anosov if its eigen-

values are real and nonnegative. For instance, T2 1
1 1

 is Anosov as
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when it is diagonalized it looks like,

(2)

(
1
2
(3−

√
5) 0

0 1
2
(3 +

√
5)

)

One of the degenerate geometries in dimension 3 is Sol. The
underlying group is R3 where the multiplication is given by

(3) (x, y, t) ∗ (x′, y′, t′) = (x+ e−tx′, y + ety′, t+ t′)

The mapping cylinder M(φ) = T 2 × [0, 1]/φ of any Anosov map

(4) Ta b
c d


of the torus carries Sol geometry. Here we are taking the quotient

of T 2×[0, 1] by setting (z, w, 0) (φ(z, w), 1). The fundamental group
of the mapping cylinder is

(5) π1(M(φ)) =< l,m, t|lm = ml, tl = lamct, tm = lbmdt > .

There is a natural picture of this acting on R3 where the longitude
and meridian are translations whose direction lies in R2 × {0} and
the action of φ is translation in the z-direction coupled by the action
of φ in the R2 × {0} directions. By changing coordinates this can
be made to look like a subgroup of Sol.

I don’t think that there is a canonical volume that only depends
on the topology of the underlying manifold, but if we require that
the area of the torus cross sections are all 1, then I think that
ln (1

2
(3 +

√
5) is its volume as a Sol manifold.

It would be seriously cool, if this number could be detected by the
quantum hyperbolic invariants of the mapping class. The growth of
quantum invariants is very sensitive to which nth root of unity you
choose.

Exercise 5. Recall from Lecture IIb this induces an automorphism
Qφ,ζ : Mn(C) → Mn(C). The automorphism is induced by conjuga-
tion by a matrix Cφ,ζ. The matrix Cφ,ζ is only determined up to a
scalar multiple. One approach is to choose Cφ,ζ so it has determinant
1. This still means that Cφ,ζ is ambiguous up to a root of unity. Look
at |Tr(Cφ,ζ)| as n grows and the argument of ζ is essentially fixed, and
see how the growth rate in n depends on Arg(ζ). It is clear that
the asymptotics of quantum invariants are drastically differ-
ent depending on where the argument of the roots of unity
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being used head in the limit. Also look for plus or minus the log-
arithm of the largest eigenvalue of φ to be derivable from the growth
rate.

3. Structure of Noncommutative Tori

These exercises explore the basic structure of noncommutative tori,
and their representation theory when the variable is a 2nth root of
unity where n is odd. The results are in analogy to theorems proved
about the Kauffman bracket skein algebra, but they are much simpler.

Let I be a finite set. An antisymmetric pairing on I is a function,

(6) σ : I × I → Z
so that for all i, j ∈ I, σ(i, j) = −σ(j, i). We say that σ is unimodular
if the determinant of the matrix corresponding to σ is ±1.

Given σ we define the noncommutative torus

(7) T(σ)

to be the quotient of the algebra of noncommutative polynomials with
complex coefficients in the variables xi, by the two-sided ideal generated
by xixj − q2σ(i,j)xjxi.

Assume that q ∈ C− {0}.

Exercise 6. Order I. Prove that monomials written so that the vari-
ables ascend are a basis for T(σ) over C.

For the sake of simplicity we will assume that I = {1, 2, . . . , l},
and has been ordered by inclusion in N. We say

∏
i x

ki
i <

∏
j x

mi
i

if when the first index i0 where the exponents disagree ki0 < mi0 . If
J = (m1, . . . ,ml) ∈ Zn then

(8) xJ =
∏
i

xmi
i .

Given a nonzero element t of T(σ) it can be written uniquely as

(9) t =
∑

zJxJ

where the zj ∈ C − {0}. Let Jmax be the largest monomial appearing
with nonzero coefficient in the expression for t. Define the lead term
of t to be

(10) ld(t) = zJmaxx
Jmax .

Exercise 7. Given t, s ∈ T(σ),

(11) ld(ts) = ld(t)ld(s).

Prove that T(σ) has no zero divisors.
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Now assume that q is a primitive 2nth root of unity where n is odd.
Let Z0(T(σ)) denote the subalgebra of T(σ) generated by monomials
all of whose exponents are divisible by n.

Exercise 8. Prove that Z0(T(σ)) is contained in the center of T(σ).

Exercise 9. Prove that T(σ) is a free module of rank nl over Z0(T(σ))
with basis given by monomials whose exponents range from 0 to n− 1

Let θi : T(σ) → T(σ) be the map that replaces the variable xi by
q2xi. It is an algebra automorphism.

Exercise 10. Prove that

(12) Θi =
1

n

n−1∑
k=0

θki : T(σ)→ T(σ)

has its image contained in the linear span of all monomials so that the
exponent of i is divisible by n. Also prove that if the ith exponent of a
monomial is already divisible by n, the map Θi sends it to itself. The
idea here is that

∑n−1
k=0 q

2k = 0.

Exercise 11. Prove that

(13) Tr(t) = Θ1 ◦ . . .Θl

has image contained in Z0(T(σ)), and is Z0(T(σ))-linear.

Exercise 12. Prove that if σ is unimodular, the pairing

(14) β : T(σ)⊗ T(σ)→ Z0(T(σ))

given by β(s ⊗ t) = Tr(st). Is nondegenerate in the sense that given
t 6= 0 ∈ T(σ) there exists s ∈ T(σ) so that β(t⊗ s) 6= 0.

Here is another construction of Tr. If t ∈ T(σ) define

(15) Lt : T(σ)→ T(σ)

by Lt(s) = ts. Since T(σ) is a free module of rank nl over Z0(T(σ))
the map can be represented as an nl × nl- matrix with coefficients in
Z0(T(σ)). This matrix has a conventional trace, tr(Lt).

Exercise 13. Prove that

(16) Tr(t) =
1

nl
tr(Lt).

Conclude that the pairing β is symmetric.
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4. Open Problems

Embedding the Skein algebra of a closed surface in a non-
commutative torus In [3] we embedded the skein algebra of the closed
torus in a noncommutative torus. In [2], they produce an embedding
of the skein algebra of any punctured surface with negative Euler char-
acteristic into a noncommutative torus. How about skein algebras of
closed surfaces?

Natural Definition of the Skein algebra This was the conjecture
at the end of lecture IIa. Is the localized skein algebra the commutant
a projective representation of the mapping class group. This might
have something to do with the Hitchin connection.

Closed formula for the product in a punctured torus This
seems really hard. In Frohman and Gelca [3] we found a closed formula
for the product in the skein algebra of a torus. The skein algebra of the
punctured torus is closely related, you can see presentations in [1]. It
seems there should be an extension of our formula for the closed torus
to the punctured torus with an error term that can be computed.

Formality of the noncommutative A-polynomial In [4] we con-
structed a left ideal of the skein algebra of the torus corresponding to
a knot and proved the ideal annihilated a vector corresponding to the
colored Jones polynomials of a knot. We conjectured that the non-
commutative A-ideal was formal in the sense that it was characterized
by the fact that it annihilated the colored Jones polynomial. In [5] a
formal setting for annihilating the colored Jones polynomial was con-
structed. They conjectured that when specialized at −1, the annihi-
lator of a module over the Weyl algebra constructed from the colored
Jones polynomials was closely related to the A-polynomial. This is a
conjecture that their setting is related to our setting. A lot of progress
has been made on proving this is true, however what is missing is a
conceptual link between the module over the Weyl algebra that they
constructed and the module over the skein algebra that comes naturally
from embedding the cylinder over the torus into the knot complement
as a collaring of the boundary.

The skein module of a connected sum of S1 × S2’s Bonahon
and Wong’s threading map means that the skein module of an oriented
three-manifold is a module over the universal SL2C-character ring of
is fundamental group.The threading map is no longer necessarily an
embedding. Understanding this module structure would go a long way
towards understanding quantum hyperbolic geometry.

Conjecture 1. Let ζ be a primitive 2nth root of unity. You can define
the Kauffman bracket of skein in #kS

1 × S2 in much the same way as
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you do it in S3, and it is a complex number that is a Laurent polynomial
in ζ. There is a submodule χ ≤ Kζ(#kS

1 × S2) that is isomorphic to
the ring ofSL2C-characters of the fundamental group of #kS

1 × S2.
The quotient Kζ(#kS

1 × S2)/χ is isomorphic to C there skeins act as
their Kauffman bracket.
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