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The Projective Sphere
Let
• Sn :“ pRn`1zt0uq{px „ λxq, λ ą 0.
• SL˘n`1pRq “ tA P GLn`1pRq | detpAq “ ˘1u

Sn and SL˘n`1pRq double cover RPn and PGLn`1pRq,
respectively.

We can do projective geometry with simply connected and
orientable model space.



The Projective Sphere
Let
• Sn :“ pRn`1zt0uq{px „ λxq, λ ą 0.
• SL˘n`1pRq “ tA P GLn`1pRq | detpAq “ ˘1u

Sn and SL˘n`1pRq double cover RPn and PGLn`1pRq,
respectively.

We can do projective geometry with simply connected and
orientable model space.



The Projective Sphere
Let
• Sn :“ pRn`1zt0uq{px „ λxq, λ ą 0.
• SL˘n`1pRq “ tA P GLn`1pRq | detpAq “ ˘1u

Sn and SL˘n`1pRq double cover RPn and PGLn`1pRq,
respectively.

We can do projective geometry with simply connected and
orientable model space.



Properly Convex Geometry
Affine Patches

Let H be a hyperplane in Rn`1. Then SnzH decomposes as
Rn
` \ Sn´1 \ Rn

´

A component of SnzH is called an affine patch

Affine patches inherit a notion of convexity
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Properly Convex Domains

A domain Ω Ă Sn is properly convex if clpΩq is a convex subset
of an affine patch.

Equivalent to Ω not containing a complete affine line

If BΩ contains no line segments then Ω is strictly convex

AutpΩq “ tA P SL˘n`1pRq | ApΩq “ Ωu
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Hilbert Metric

We define the Hilbert metric on Ω by

• Straight lines are geodesics (there can be others)
• This metric is usually not Riemannian (only Finsler)
• AutpΩq Ă IsompΩq
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Hyperbolic Geometry

• Let xx , yy “ x1y1 ` . . . xnyn ´ xn`1yn`1 be the standard
bilinear form of signature pn,1q on Rn`1

• Let C` “ tx P Rn`1|xx , xy ă 0, xn`1 ą 0u

• C` “ Hn is the Klein model of hyperbolic space.
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• Γ Ă AutpΩq be a discrete and torsion free subgroup

then ΓzΩ is a properly convex n-manifold
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• M be an orientable n-manifold,
• ΓzΩ be a properly convex manifold, and
• f : M Ñ ΓzΩ be a diffeomorphism (called a marking)

then pf , ΓzΩq is a properly convex structure on M
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Properly Convex Manifolds
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By lifting f we get a map Dev : rM Ñ Ω called a developing map.

f also gives a representation

ρ : π1M Ñ Γ Ă SL˘n`1pRq

called a holonomy representation. Dev is ρ-equivariant.
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Equivalence of Structures

Let M be a manifold and consider the equivalence relation on
properly convex structures generated by

1. pf , ΓzΩq „ pf 1, ΓzΩq if f and f 1 are isotopic and

2. pf , ΓzΩq „ pg ˝ f , Γ1zΩ1q

rM

π1Mü

��

Dev
–
// Ω

ýΓ
��

–

gPSL˘
// Ω1

ýΓ1

��

M
–

f // ΓzΩ
–

g
// Γ1zΩ1

BpMq “ trpf , ΓzΩqs | ΓzΩ properly convexu is called the
deformation space of M



Equivalence of Structures

Let M be a manifold and consider the equivalence relation on
properly convex structures generated by

1. pf , ΓzΩq „ pf 1, ΓzΩq if f and f 1 are isotopic and
2. pf , ΓzΩq „ pg ˝ f , Γ1zΩ1q

rM

π1Mü

��

Dev
–
// Ω

ýΓ
��

–

gPSL˘
// Ω1

ýΓ1

��

M
–

f // ΓzΩ
–

g
// Γ1zΩ1

BpMq “ trpf , ΓzΩqs | ΓzΩ properly convexu is called the
deformation space of M



Equivalence of Structures

Let M be a manifold and consider the equivalence relation on
properly convex structures generated by

1. pf , ΓzΩq „ pf 1, ΓzΩq if f and f 1 are isotopic and
2. pf , ΓzΩq „ pg ˝ f , Γ1zΩ1q

rM

π1Mü

��

Dev
–
// Ω

ýΓ
��

–

gPSL˘
// Ω1

ýΓ1

��

M
–

f // ΓzΩ
–

g
// Γ1zΩ1

BpMq “ trpf , ΓzΩqs | ΓzΩ properly convexu is called the
deformation space of M



Complete Hyperbolic Manifolds

Hn is a properly convex domain in Sn

Let Γ be a discrete and torsion-free subgroup of
IsompHnq – AutpHnq

ΓzHn is a properly convex manifold.
(i.e. complete hyperbolic manifolds are properly convex
manifolds.)
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Examples
Dimension 2

Let Σ be a closed surface of genus g ě 2

• BpΣq is a cell of dimension ´8χpΣq “ 16g ´ 16
(Goldman)

• Contains Teichmüller space as a ´3χpΣq “ 6g ´ 6
dimensional subcell.

• Constructed by gluing properly convex structures on pairs
of pants.

• Analogous results for finite volume structures if Σ is
non-compact (Marquis)

One of few cases where BpMq is understood globally!
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Examples
Higher dimensions

• If M is hyperbolic contains a finite volume totally geodesic
surface then we can find non-hyperbolic structures by
“bending” (Johnson–Millson, Koszul, Marquis).

• Most, but not all, closed 2-generator census manifolds are
locally rigid near their complete hyperbolic structure
(Cooper–Long–Thistlethwaite).

• A large class of cusped 3-manifolds admit properly convex
deformations near their hyperbolic structure
(B–Danciger–Lee)

• There are strictly convex structures on some
non-hyperbolic manifolds in dimension ě 4 (Kapovich)

• Several two-bridge knot and link complements do not
admit strictly convex structures other than the hyperbolic
structure (B).
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Deforming Structures

Instead of trying to understand BpMq globally we will try to
understand it locally.

Need a basepoint to look near

Let M be a finite volume hyperbolic manifold of dimension ě 3

(Mostow–Prasad rigidity): There is a unique complete
hyperbolic structure on M

This gives a canonical basepoint in BpMq
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Deforming Structures
Closed Case

Let M be an n-manifold

X pMq :“ Hompπ1M,SLn`1pRqq{SLn`1pRq

be the “character variety” of M.

Equivalent structures have conjugate holonomy, so we get

Hol : BpMq Ñ X pMq

(Ehresmann–Thurston, Koszul) When M is closed Hol is a
local homeomorphism.

Deforming representations is a necessary and sufficient
condition for deforming structures
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Deforming Structures
Non-compact Case

When M is non-compact

Hol : BpMq Ñ X pMq

is no longer a local homeomorphism!

For example the complete finite volume hyperbolic structure on
a non-compact 3-manifold admits nearby incomplete structures
with indiscrete holonomy.

(Cooper–Long–Tillmann) When M is non-compact Hol restricts
to a local homeomorphism

Hol : BpMqce Ñ X pMqrel
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M “ MK \ p\
k
i“1Eiq

Where Mk is compact and each Ei is finitely covered by
T n´1 ˆ r0,8q

The Ei are called cusps
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Parabolic Cusps

• Let C “ tpx , vq P Rˆ Rn´1 | x ě 1
2 |v |

2
u – Hn

• C is foliated by Ct “ tpx , vq P C | x “ 1
2 |v |

2
` tu

(horospheres)

Then this cover can be realized as ∆zC where ∆ is a lattice in
the Lie group (of parabolic translations)
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Generalized Cusps

A properly convex manifold C “ ΓzΩ is a generalized cusp
• C – BC ˆ r0,8q, with BC compact,
• π1C is virtually nilpotent, and
• C has strictly convex boundary.

Ends of finite volume hyperbolic manifolds are examples

Γ virtually preserves a real flag (this property defines XrelpMq)

Having ends of this type defines BcepMq
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Generalized Cusps
Hyperbolic Examples

• Let λ1, . . . , λn ą 0,
• Let C “ tpx1, . . . , xnq P pR`qn |
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Generalized Cusps

Let O “ tpx1, . . . , xnq P Rn | xi ě 0u and let Sn
0 “ O{px „ λxq,

λ ą 0.

Sn
0 is a pn ´ 1q-simplex plus a non-Hausdorff point r0s

Each v P Sn
0 gives rise to an pn ´ 1q-dimensional abelian Lie

group Gv and a domain Cv foliated by horospheres

• Hyperbolic examples come from v P intpSn
0 q

• Parabolic example comes from 0
• Points on faces of Sn

0 are “products” of parabolic and quasi
hyperbolic examples
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Generalized Cusps
Classification

Theorem 1 (B–Cooper–Leitner)
Let N “ ΓzΩ be an n-dimensional generalized cusp. Then there
is a finite index subgroup Zn´1 – Γ1 Ă Γ and a v P Sn

0 such that
• After applying a projective transformation Cv Ă Ω

• Γ1 is conjugate to a lattice in Gv

• Γ1zCv Ă Γ1zΩ and is a deformation retract.

Generalizes work of Leitner for n “ 3
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Generalized Cusps
Realization Problem

Can we realize generalized cusps as ends of more complicated
manifolds?

Let v P Sn
0 , is there a properly convex n-manifold N with π1N

not virtually nilpotent such that N has an end that is finitely
covered by ∆zCv where ∆ Ă Gv is a lattice?

• If v “ 0, yes, let N be a finite volume hyperbolic manifold
• If n “ 2, yes (Goldman, Choi, Marquis)
• If n “ 3

• If v is a “vertex”, yes, let M be complement of figure-eight
(B)

• If v is in interior, yes (B–Danciger–Lee)
• If v in a “side”, probably yes.
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Transitions of Cusps

Pro: We have nice models that allow us to understand the
geometry of generalized cusps

Con: Models don’t account for how cusps can transition to each
other

Need a family of models that account for how the geometry of
one type of cusp degenerates to the geometry of another type
of cusp
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The Slice

Let xγ1, γ2y – Z2, let v “ r1,1,1s P S3
0 .

For t ą 0 define

xt ,θ “ exp
ˆ

t cos θ
t cospθ ` 2π{3q

t cospθ ` 4π{3q
0

˙

P Gv

yt ,θ “ exp
ˆ

t sin θ
t sinpθ ` 2π{3q

t sinpθ ` 4π{3q
0

˙

P Gv

Define ρpt ,θ,a,bq : Z2 Ñ SL4pRq by

ρpt ,θ,a,bqpγ1q “ exppxt ,θq, ρpt ,θ,a,bqpγ2q “ exppaxt ,θ ` byt ,θq.

Let Γt ,θ,a,b “ ρt ,θ,a,bpZ2q, then Γt ,θ,a,bzCv is a generalized cusp

As t Ñ 0, Γt ,θ,a,bzCv collapse
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The Slice
Let C0 be a parabolic cusp domain and let
p8 “ r1 : 0 : 0 : 0s P BC0.
For t ą 0, let St cross section of BC0 at x1 “

1
2t2 .

• Using xt ,θ and yt ,θ we construct three complex numbers
tz i

t ,θu
3
i“1 equally spaced on the circle of radius t .

• Let pi
t ,θ be the corresponding points on St .

• Let Mt ,θ P SL4pRq be an element taking the vertices of the
standard simplex to p1

t ,θ,p
2
t ,θ,p

3
t ,θ, and p8.

• Let Ct ,θ be image of Cv under Mt ,θ
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Transition



The Slice

Let ρ1t ,θ,a,b “ Mt ,θρpt ,θ,a,bqM
´1
t ,θ

lim
tÑ0

ρ1pt ,θ,a,bqpγ1q “

¨

˚

˚

˝

1 1 0 1
2

0 1 0 1
0 0 1 0
0 0 0 1

˛

‹

‹

‚

lim
tÑ0

ρ1pt ,θ,a,bqpγ2q “

¨

˚

˚

˝

1 a b 1
2pa

2 ` b2q

0 1 0 a
0 0 1 b
0 0 0 1

˛

‹

‹

‚

S “ tρ1
pt ,θ,a,bq | a,b, θ P R, t P Rě0u Ă HompZ2,SL4pRqq

S are holonomies of hyperbolic generalized cusps that
converge to parabolic cusps as t Ñ 0
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Deforming Hyperbolic Manifolds
Let M be a finite volume hyperbolic 3-manifold with 1-cusp and
let ρhyp the holonomy of its hyperbolic structure

Theorem 2 (B–Danciger–Lee)
Let M be as above. Suppose that M is infinitesimally rigid rel
BM Then the hyperbolic structure on M can be deformed to a
properly convex structure with hyperbolic generalized cusp end.

M is infinitesimally rigid rel BM if

H1
ρhyp
pM, sl4q Ñ H1

ρhyp
pBM, sl4q

induced by BM ãÑ M is an injection

The cohomology groups are tangent spaces of “non-trivial”
deformations

Very common amongst known examples
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Deforming Hyperbolic Manifolds
There is a map

res : HompM,SL4pRqq Ñ HompBM,SL4pRqq

• HompBM,SL4pRqq is a smooth manifold near respρhypq

• Image of res has codimension 3 near respρhypq (Poincare
duality)

• If M is infinitesimally rigid rel BM then HompM,SL4pRqq is
smooth at ρhyp.

• S is a 4-dimensional submanifold of HompBM,SL4pRqq res
(generically) consisting of representations diagonalizable
over R.

• res is transverse to S near ρhyp and so we can deform ρhyp
to be diagonalizable when restricted to π1BM.
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Remaining Questions

1. Can we find a properly convex manifold with quasi
hyperbolic generalized cusp end of form ∆zCv , where v is
in a “side” of S3

0 ?

• Probably, by taking limits of examples with hyperbolic
generalized cusp ends

2. Can we solve the realization problem in higher
dimensions?

Theorem 3 (B–Marquis)
For each n ě 3 and v P Sn

0 be a vertex there is a finite volume
hyperbolic n-manifold whose hyperbolic structure can be
deformed to have a generalized cusp of the form ∆zCv
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