Exotic properly convex manifolds via Dehn filling

Sam Ballas
(joint with J. Danciger, G.-S. Lee, and L. Marquis)

Florida State University

University of Virginia
Geometry Seminar
Oct 26, 2021
Motivation

Let M be a closed hyperbolic manifold.
Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M.
Motivation

Let M be a closed hyperbolic manifold.
Let $\mathcal{H}(M)$ be the space of hyperbolic structures on M.

Theorem
$\mathcal{H}(M)$ is connected.
Motivation

Let M be a closed hyperbolic manifold.
Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M

Theorem
$\mathbb{H}(M)$ is connected

proof sketch:

- $\dim(M) = 2$: Fenchel-Neilsen coordinates on Teichmüller space
- $\dim(M) > 2$: Mostow rigidity.
Motivation

Let M be a closed hyperbolic manifold.
Let $\mathbb{H}(M)$ be the space of hyperbolic structures on M

Theorem
$\mathbb{H}(M)$ is connected

proof sketch:

- $\dim(M) = 2$: Fenchel-Neilsen coordinates on Teichmüller space
- $\dim(M) > 2$: Mostow rigidity.

Motivating Question: What happens if we look at other geometries?
Projective Geometry

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1}.
Projective Geometry

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1}.
Let $P : \mathbb{R}^{n+1} \setminus \{0\} \rightarrow \mathbb{RP}^n$ be projectivization.
Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1}.
Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be projectivization.

$G = \text{PGL}_{n+1}(\mathbb{R}) := \text{GL}_{n+1}(\mathbb{R})/\mathbb{R}^\times I$
Projective Geometry

Let \mathbb{RP}^n be the space of lines through the origin in \mathbb{R}^{n+1}.
Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be projectivization.

\[
G = \text{PGL}_{n+1}(\mathbb{R}) := \text{GL}_{n+1}(\mathbb{R}) / \mathbb{R}^\times \text{I}
\]

\mathbb{RP}^n is a geometry with automorphism group G.
Convex Projective Geometry

Let \tilde{H} be a hyperplane in \mathbb{R}^{n+1}
Let $H = P(\tilde{H})$ be the corresponding projective hyperplane
Convex Projective Geometry

Let \(\tilde{H} \) be a hyperplane in \(\mathbb{R}^{n+1} \).
Let \(H = P(\tilde{H}) \) be the corresponding projective hyperplane.
\(A_H := \mathbb{RP}^n \setminus H \) is an affine patch.
Convex Projective Geometry

Let \(\tilde{H} \) be a hyperplane in \(\mathbb{R}^{n+1} \)
Let \(H = P(\tilde{H}) \) be the corresponding projective hyperplane
\(A_H := \mathbb{RP}^n \setminus H \) is an \textit{affine patch} (i.e. \(\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1} \))
Convex Projective Geometry

Let \tilde{H} be a hyperplane in \mathbb{R}^{n+1}
Let $H = P(\tilde{H})$ be the corresponding projective hyperplane
$A_H := \mathbb{R}P^n \setminus H$ is an \textit{affine patch} (i.e. $\mathbb{R}P^n = \mathbb{R}^n \sqcup \mathbb{R}P^{n-1}$)
$\Omega \subset \mathbb{R}P^n$ is \textit{properly convex} if $\overline{\Omega}$ is a convex subset of \textit{some} affine patch
Convex Projective Geometry

Let \(\tilde{H} \) be a hyperplane in \(\mathbb{R}^{n+1} \)
Let \(H = P(\tilde{H}) \) be the corresponding projective hyperplane
\(A_H := \mathbb{R}P^n \setminus H \) is an affine patch (i.e. \(\mathbb{R}P^n = \mathbb{R}^n \sqcup \mathbb{R}P^{n-1} \))
\(\Omega \subset \mathbb{R}P^n \) is properly convex if \(\overline{\Omega} \) is a convex subset of some affine patch
Let \(\Omega \) be properly convex.
Define
\[
PGL(\Omega) = \{A \in G \mid A(\Omega) = \Omega\}
\]
Convex projective geometry
Some examples
Convex projective geometry

Some examples
Convex Projective Geometry

Some examples

- $\tilde{T} = \mathbb{R}^3_+$ (positive orthant)
- $T = P(\tilde{T})$
- $\text{PGL}(T) \cong \text{Diag}_3 \times S_3 \subset \text{PGL}_3(\mathbb{R})$
Convex Projective Geometry

Some Examples

- L a Lorentzian form on \mathbb{R}^{n+1}
- $C = \{ v \in \mathbb{R}^{n+1} \mid L(v, v) < 0 \}$
- $\mathbb{H}^n = P(C)$ (Klein Model)
- $\text{PGL}(\mathbb{H}^n) \cong \text{PO}(L)$
Convex Projective Manifolds

Let Ω be properly convex
Let $\Gamma \subset \text{PGL}(\Omega)$ be discrete
Convex Projective Manifolds

Let Ω be properly convex
Let $\Gamma \subset \text{PGL}(\Omega)$ be discrete
Ω/Γ is a \textit{convex projective manifold}
Some Examples
Complete Hyperbolic Manifolds

- $\Omega \cong \mathbb{H}^n$
- $\Gamma \subset \text{PGL}(\mathbb{H}^n)$ discrete

The \mathbb{H}^n/Γ is a complete hyperbolic manifold
Some Examples

Hex Torus

- $\Omega \cong T$
- $\Delta \cong \langle \gamma_1, \gamma_2 \rangle \subset \text{Diag}_3$

T/Δ is a \textit{hex torus}
Convex Projective Structures

Let M be a compact manifold

A *convex projective structure* on M is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f : M \to \Omega/\Gamma$ a diffeomorphism
Convex Projective Structures

Let M be a compact manifold

A convex projective structure on M is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f : M \to \Omega/\Gamma$ a diffeomorphism

There is an equivalence relation generated by

- Isotopy of f
- Replace Ω/Γ with Ω'/Γ' where $\Omega' = A(\Omega)$, $\Gamma' = A\Gamma A^{-1}$ for $A \in G$
Convex Projective Structures

Let M be a compact manifold

A *convex projective structure* on M is $(f, \Omega/\Gamma)$

- Ω/Γ properly convex
- $f : M \to \Omega/\Gamma$ a diffeomorphism

There is an equivalence relation generated by

- Isotopy of f
- Replace Ω/Γ with Ω'/Γ' where $\Omega' = A(\Omega)$, $\Gamma' = A\Gamma A^{-1}$ for $A \in G$
Exotic Convex Projective Structures

Let M be a closed hyperbolic manifold
Let $\text{CP}(M)$ be the set of equivalence classes
Topologize $\text{CP}(M)$ using C^∞ topology on $C^\infty(\tilde{M}, \mathbb{RP}^n)$
Exotic Convex Projective Structures

Let M be a closed hyperbolic manifold
Let $\text{CP}(M)$ be the set of equivalence classes
Topologize $\text{CP}(M)$ using C^∞ topology on $C^\infty(\tilde{M}, \mathbb{RP}^n)$

Definition
$p \in \text{CP}(M)$ is *exotic* if it is not the same connected component as $\mathbb{H}(M) \subset \text{CP}(M)$.

p is exotic if it cannot be continuously deformed to a hyperbolic structure
Exotic Convex Projective Structures

Existence

When do exotic structures exist?
When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman ’90)
Exotic Convex Projective Structures

Existence

When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman ’90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman ’90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
- Dimension ≥ 4: ???
Exotic Convex Projective Structures

Existence

When do exotic structures exist?

- Dimension 2: No exotic structures \((\text{Goldman '90}) \)
- Dimension 3: Infinitely many examples
 \((\text{B-Danciger-Lee-Marquis}) \)
- Dimension \(\geq 4 \): ???

Question: Does every closed hyperbolic 3-manifold admit an exotic convex projective structure?
When do exotic structures exist?

- Dimension 2: No exotic structures (Goldman ’90)
- Dimension 3: Infinitely many examples (B-Danciger-Lee-Marquis)
- Dimension ≥ 4: ???

Question: Does every closed hyperbolic 3-manifold admit an exotic convex projective structure? (maybe yes!)
Some Tools

Let \([(f, \Omega/\Gamma)] \in \text{CP}(M) \).
Define \(f_* : \pi_1 M \leftrightarrow \Gamma \subset G \) (holonomy)
This is only well defined up to conjugacy in \(G \)
Some Tools

Let $[(f, \Omega/\Gamma)] \in \text{CP}(M)$. Define $f_* : \pi_1 M \rightarrow \Gamma \subset G$ (holonomy)
This is only well defined up to conjugacy in G

Hol : CP(M) → Rep($\pi_1 M$, G) := Hom($\pi_1 M$, G)/G

$[(f, \Omega/\Gamma)] \mapsto [f_*]$ (holonomy map)
Some Tools

Let \([(f, \Omega/\Gamma)] \in CP(M)\).
Define \(f_* : \pi_1 M \rightarrow \Gamma \subset G\) (holonomy)
This is only well defined up to conjugacy in \(G\)

\(\text{Hol} : CP(M) \rightarrow \text{Rep}(\pi_1 M, G) := \text{Hom}(\pi_1 M, G)/G\)
\([(f, \Omega/\Gamma)] \mapsto [f_*]\) (holonomy map)

Theorem (Koszul)
\(\text{Hol}\) is an open map
Some Tools

Let $[(f, \Omega/\Gamma)] \in \text{CP}(M)$.
Define $f_* : \pi_1 M \hookrightarrow \Gamma \subset G$ (holonomy)
This is only well defined up to conjugacy in G

$\text{Hol} : \text{CP}(M) \to \text{Rep}(\pi_1 M, G) := \text{Hom}(\pi_1 M, G)/G$

$[(f, \Omega/\Gamma)] \mapsto [f_*]$ (holonomy map)

Theorem (Koszul)
Hol is an open map

Moral: If you can deform the representation you can deform the structure.
Some Tools

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in \text{CP}(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- \mathfrak{g} the Lie algebra of G
- $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ (twisted cohomology)
Some Tools

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in \text{CP}(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- \mathfrak{g} the Lie algebra of G
- $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ (twisted cohomology)

Fact: $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ is the “Zariski tangent space” to $\text{Rep}(\pi_1 M, G)$ at $[\rho_{hyp}]$
Some Tools

- M a closed hyperbolic 3-manifold
- $[(f_{hyp}, \mathbb{H}^n/\Gamma)] \in \text{CP}(M)$ the hyperbolic structure
- $\rho_{hyp} = (f_{hyp})_*$ hyperbolic holonomy
- \mathfrak{g} the Lie algebra of G
- $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ (twisted cohomology)

Fact: $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g})$ is the “Zariski tangent space” to $\text{Rep}(\pi_1 M, G)$ at $[\rho_{hyp}]$

If $H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g}) = 0$ then M is infinitesimally rigid
Some Tools

- \(M \) a closed hyperbolic 3-manifold
- \([(f_{hyp}, \mathbb{H}^n/\Gamma)] \in CP(M)\) the hyperbolic structure
- \(\rho_{hyp} = (f_{hyp})_* \) hyperbolic holonomy
- \(\mathfrak{g} \) the Lie algebra of \(G \)
- \(H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g}) \) (twisted cohomology)

Fact: \(H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g}) \) is the “Zariski tangent space” to \(\text{Rep}(\pi_1 M, G) \) at \([\rho_{hyp}]\)

If \(H^1_{\rho_{hyp}}(\pi_1 M, \mathfrak{g}) = 0 \) then \(M \) is infinitesimally rigid

Fact: Infinitesimally rigid \(\Rightarrow \) locally rigid \(\Rightarrow \) all non-hyperbolic structures are exotic.
Dehn Filling

Let N be a manifold with $\partial N \cong T^2$.
Let $[\gamma] \in \pi_1(\partial N)$ be simple
Let D be a solid torus with meridian m
Dehn Filling

Let N be a manifold with $\partial N \cong T^2$.
Let $[\gamma] \in \pi_1(\partial N)$ be simple
Let D be a solid torus with meridian m
Let N_γ be obtained by gluing N and D along boundaries by diffeomorphism mapping γ to m \textit{(Dehn filling of N along γ)}
Dehn Filling

Let N be the complement of the figure-8 knot
Dehn Filling

Let N be the complement of the figure-8 knot

Theorem (Thurston’s Dehn Filling Theorem)

All but finitely many Dehn fillings of N admit a hyperbolic structure.
Dehn Filling

Let N be the complement of the figure-8 knot

Theorem (Thurston’s Dehn Filling Theorem)

All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener–Porti)

All but finitely many Dehn fillings of N are infinitesimally rigid.
Let N be the complement of the figure-8 knot

Theorem (Thurston’s Dehn Filling Theorem)
All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener–Porti)
All but finitely many Dehn fillings of N are infinitesimally rigid.

Theorem (B-Danciger-Lee-Marquis)
Infinitely many Dehn fillings of N admit exotic convex projective structures.
Dehn Filling

Let N be the complement of the figure-8 knot

Theorem (Thurston’s Dehn Filling Theorem)

All but finitely many Dehn fillings of N admit a hyperbolic structure.

Theorem (Heusener–Porti)

All but finitely many Dehn fillings of N are infinitesimally rigid.

Theorem (B-Danciger-Lee-Marquis)

Infinitely many Dehn fillings of N admit exotic convex projective structures.

N can be replaced by other 1-cusped hyperbolic manifolds.
Hyperbolic Dehn Filling

Let $\rho_{hyp} : \pi_1 N \to \text{PSL}(2, \mathbb{C})$ be the hyperbolic holonomy

Let $\Delta = \pi_1 \partial N = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$.

$\rho_{hyp}(\Delta) \subset G_p \cong \mathbb{R}^2$ \hspace{1cm} (stabilizer of $p \in \partial \mathbb{H}^3$)
Hyperbolic Dehn Filling

Let $\rho_{hyp} : \pi_1 N \to \text{PSL}(2, \mathbb{C})$ be the hyperbolic holonomy.
Let $\Delta = \pi_1 \partial N = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$.

$\rho_{hyp}(\Delta) \subset G_p \cong \mathbb{R}^2$
(stabilizer of $p \in \partial \mathbb{H}^3$)
Hyperbolic Dehn Filling

Deform ρ_{hyp} to non-conjugate $\rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2, \mathbb{C}))$

$\rho'(\Delta) \subset G_\ell \cong \mathbb{C}^*$

(stabilizer of geodesic ℓ)
Hyperbolic Dehn Filling

Deform ρ_{hyp} to non-conjugate $\rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2, \mathbb{C}))$

$\rho'(\Delta) \subset G_\ell \cong \mathbb{C}^*$ (stabilizer of geodesic ℓ)

ρ' is the holonomy of an \textit{incomplete} hyperbolic structure on N.
Hyperbolic Dehn Filling

Deform ρ_{hyp} to non-conjugate $\rho' \in \text{Hom}(\pi_1 N, \text{PSL}(2, \mathbb{C}))$

$\rho' (\Delta) \subset G_\ell \cong \mathbb{C}^*$

($\text{stabilizer of geodesic } \ell$)

ρ' is the holonomy of an incomplete hyperbolic structure on N.

Let $g_1 = \rho'(\gamma_1), g_2 = \rho'(\gamma_2)$

There are unique $(a, b) \in \mathbb{R}^2$ so that $\text{Dehn filling coordinates}$

$$a \log(g_1) + b \log(g_2) = 2\pi i$$
Hyperbolic Dehn filling
Dehn filling coordinates control geometry of the completion
Hyperbolic Dehn filling

Dehn filling coordinates control geometry of the completion

If \((a, b) \in \mathbb{Z}^2\) relatively prime
\[\delta = \gamma_1^a \gamma_2^b\] is simple curve in \(\ker \rho', \rho'(\Delta) \cong \mathbb{Z}\)
Hyperbolic Dehn filling

Dehn filling coordinates control geometry of the completion

If \((a, b) \in \mathbb{Z}^2\) relatively prime
\[\delta = \gamma_1^a \gamma_2^b\]
is simple curve in \(\ker \rho', \rho'(\Delta) \cong \mathbb{Z}\)

The completion of incomplete structure is \(N_\delta\)
\(N_\delta\) has a hyperbolic structure!!
Hyperbolic Dehn Filling

Which δ arise from this construction?
Hyperbolic Dehn Filling

Which δ arise from this construction?

Thurston: there is k so that if

- $(a, b) \in \mathbb{Z}^2$
- a, b relatively prime
- $a^2 + b^2 > k^2$

then (a, b) are the Dehn filling coordinates of incomplete structure on N
Hyperbolic Dehn Filling

Which δ arise from this construction?

Thurston: there is k so that if

- $(a, b) \in \mathbb{Z}^2$
- a, b relatively prime
- $a^2 + b^2 > k^2$

then (a, b) are the Dehn filling coordinates of incomplete structure on N
Properly Convex Dehn Filling

Step 1

Deform ρ_{hyp} to $\rho' \in \text{Hom}(\pi_1 N, G)$ where ρ' is holonomy of convex projective structure with "generalized cusp" (Cooper-Long-Tillmann extension of Koszul Thm)
Properly Convex Dehn Filling

first deformation

$$\rho'(\Delta) \subset G^\Omega_\ell \cong \mathbb{R}_{dil} \oplus i\mathbb{R}_{uni} \cong \mathbb{C}$$

(stabilizer of \(\ell\) in \(\text{PGL}(\Omega)\))

There is (non-unique) \((a, b) \in \mathbb{R}^2\) so that

$$\rho'(\gamma_1^a \gamma_2^b) \in i\mathbb{R}_{uni}$$

\(a/b \in S^1 = \mathbb{R} \cup \{\infty\}\) is well defined (unipotent slope)
Properly Convex Dehn Filling

Step 2

Deform ρ' to $\rho'' \in \text{Hom}(\pi_1 M, G)$ so that $\rho''(\Delta) \subset G^\rho''_\ell \cong \mathbb{C}^*$

(stabilizer of convex “nbhd” of ℓ)
Properly Convex Dehn Filling

Step 2

Let $g_1 = \rho''(\gamma_1)$, $g_2 = \rho''(\gamma_2)$

Get *Dehn filling coordinates* (a, b)

$$a \log(g_1) + b \log(g_2) = 2\pi i$$
Properly Convex Dehn Filling

Step 2

Let $g_1 = \rho''(\gamma_1)$, $g_2 = \rho''(\gamma_2)$

Get \textit{Dehn filling coordinates} (a, b)

$$a \log(g_1) + b \log(g_2) = 2\pi i$$

Unipotent elements in $i\mathbb{R}_{uni} \subset G^\Omega_\ell$ deform to rotations in G^ρ_ℓ so a/b is close to unipotent slope of ρ'
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\).
Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[\rho''(\Delta) \cong \mathbb{Z}\]

\[D \cong G_{\ell}^{\rho''} / \rho''(\Delta)\]

(properly convex solid torus)
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[
\rho''(\Delta) \cong \mathbb{Z}
\]

\[
D \cong G_{\ell}^{\rho''} \big/ \rho''(\Delta)
\]

(\textit{properly convex solid torus})
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[
\rho''(\Delta) \cong \mathbb{Z}
\]

\[
D \cong G_{\ell}^{\rho''} / \rho''(\Delta)
\]

(properly convex solid torus)
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[\rho''(\Delta) \cong \mathbb{Z}\]

\[D \cong G_{\ell}^\rho'' / \rho''(\Delta)\]

(properly convex solid torus)
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[\rho''(\Delta) \cong \mathbb{Z} \]

\[D \cong G_{\ell}^{\rho''} / \rho''(\Delta) \]

(properly convex solid torus)
Properly Convex Dehn Filling

Suppose \((a, b) \in \mathbb{Z}^2\), relatively prime, \(\delta = \gamma_1^a \gamma_2^b\)

\[\rho''(\Delta) \cong \mathbb{Z}\]

\[D \cong G_\ell^{\rho''} / \rho''(\Delta)\]

(\textit{properly convex solid torus})

\[N_\delta\] admits a non-hyperbolic properly convex structure
Properly Convex Dehn Filling

Which δ arise
Properly Convex Dehn Filling

Which δ arise

$\text{Rep}(\pi_1, N, G)$

unipotent slope
Properly Convex Dehn Filling

Which δ arise

$\text{Rep} \left(\pi, N, G \right)$ unipotent slope $\text{IRU \{\infty\}}$

Exotic fillings
Properly Convex Dehn Filling

Which δ arise

$\text{Rep}(\pi, N, G)$

unipotent slope

$\mathbb{R} U \{\infty\}$

A positive proportion of fillings are exotic!
Properly Convex Dehn Fillings
Constructing the deformations

- \(\text{Rep}(\mathbb{Z}^2, G) \cong \mathbb{R}^6, \text{Rep}(\pi_1 N, G) \cong \mathbb{R}^3 \)
- There is a 3-dim locus of “pure” reps \(P \subset \text{Rep}(\mathbb{Z}^2, G) \) with repeated eigenvalue
- Contains holonomy of with generalized cusps and Dehn fillings
- Examine how \(P \) intersects \(\text{res} : \text{Rep}(\pi_1 N, G) \to \text{Rep}(\mathbb{Z}^2, G) \)
The Real Result

Theorem (B-Danciger-Lee-Marquis)

Let M be a 1-cusped *infinitesimally rigid* 3-manifold with non-constant unipotent slope then a positive proportion of the Dehn fillings of M admit exotic convex projective structures.
The Real Result

Theorem (B-Danciger-Lee-Marquis)

Let M be a 1-cusped infinitesimally rigid 3-manifold with non-constant unipotent slope then a positive proportion of the Dehn fillings of M admit exotic convex projective structures.

So far M_{004} (fig-8), M_{003} (fig-8 sister), M_{007}, and M_{019} have been shown to satisfy these hypotheses.
Effective Questions

- Which cusped 3-manifolds are infinitesimally rigid?
- Which cusped 3-manifolds have non-constant unipotent slope?
- For a given M what is the range of the unipotent slope map?
Thank you