Complex Projective Structures on Surfaces

Sam Ballas
(joint with P. Bowers, A. Casella, & L. Ruffoni)

Florida State University

UF Colloquium
Feb 11, 2022
Overview

• Correspondences between an analytic object (ODEs & measured laminations) and geometric objects (complex projective structures)
Overview

- Correspondences between an analytic object (*ODEs & measured laminations*) and geometric objects (*complex projective structures*)
- In general, these correspondences are not explicit
Overview

- Correspondences between an analytic object (ODEs & measured laminations) and geometric objects (complex projective structures)
- In general, these correspondences are not explicit
- **Today**: In certain cases we can make these correspondences are explicit
\(\mathbb{CP}^1 \) geometry

\(\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\} \) \hspace{1cm} (Riemann Sphere)

\(\text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\{\pm I\} \) \hspace{1cm} (Biholomorphisms of \(\mathbb{CP}^1 \))
\mathbb{CP}^1 geometry

$\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$ \hspace{1em} (Riemann Sphere)

$\text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\{\pm I\}$ \hspace{1em} (Biholomorphisms of \mathbb{CP}^1)

$\text{PSL}_2(\mathbb{C})$ acts on \mathbb{CP}^1 via linear fractional transformations

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az + b}{cz + d}$$
\(\mathbb{CP}^1 \) geometry

\(\mathbb{CP}^1 = \mathbb{C} \cup \{ \infty \} \) \quad (Riemann Sphere)

\(\text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\{ \pm I \} \) \quad (Biholomorphisms of \(\mathbb{CP}^1 \))

\(\text{PSL}_2(\mathbb{C}) \) acts on \(\mathbb{CP}^1 \) via linear fractional transformations

\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az + b}{cz + d}
\]

- There is no \(\text{PSL}_2(\mathbb{C}) \)-invariant metric on \(\mathbb{CP}^1 \)
\mathbb{CP}^1 geometry

$\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$ \quad (Riemann Sphere)

$\text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\{\pm I\}$ \quad (Biholomorphisms of \mathbb{CP}^1)

$\text{PSL}_2(\mathbb{C})$ acts on \mathbb{CP}^1 via linear fractional transformations

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az + b}{cz + d}$$

- There is no $\text{PSL}_2(\mathbb{C})$-invariant metric on \mathbb{CP}^1
- Circles are invariant and play the role of geodesics
Hyperbolic surfaces

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$
Hyperbolic surfaces

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ (unit disk)
- \mathbb{D} is a model of the **hyperbolic plane**
Hyperbolic surfaces

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$ (*unit disk*)
- D is a model of the *hyperbolic plane*
- $G_D := \text{Stab}_{\text{PSL}_2(\mathbb{C})}(D) = \text{Isom}(D) \neq \text{PSL}_2(\mathbb{R})$
Hyperbolic surfaces

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_{\mathbb{D}} := Stab_{\text{PSL}_2(\mathbb{C})}(\mathbb{D}) = \text{Isom}(\mathbb{D}) = \text{PSU}(1, 1) \neq \text{PSL}_2(\mathbb{R})$
Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ (unit disk)
- \mathbb{D} is a model of the hyperbolic plane
- $G_\mathbb{D} := \text{Stab}_{\text{PSL}_2(\mathbb{C})}(\mathbb{D}) = \text{Isom}(\mathbb{D}) = \text{PSU}(1, 1) \neq \text{PSL}_2(\mathbb{R})$

Theorem (Uniformization)

There is a discrete group $\Gamma \subset G_\mathbb{D}$ so that $\Sigma \cong \mathbb{D}/\Gamma$.
Hyperbolic surfaces

Let $\Sigma := \Sigma_g$ be a surface of genus g with $\chi(\Sigma) := 2 - 2g < 0$

- $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ (unit disk)
- \mathbb{D} is a model of the *hyperbolic plane*
- $G_{\mathbb{D}} := Stab_{PSL_2(\mathbb{C})}(\mathbb{D}) = \text{Isom}(\mathbb{D}) = PSU(1, 1) \neq PSL_2(\mathbb{R})$

Theorem (Uniformization)

*There is a discrete group $\Gamma \subset G_{\mathbb{D}}$ so that $\Sigma \cong \mathbb{D}/\Gamma$.***

Let $T(\Sigma)$ be the space of hyperbolic structures on Σ

Theorem

The space, $T(\Sigma) \cong \mathbb{R}^{6g-6}$
Complex projective structures

Definition

Let Σ be a surface. A *complex projective structure* on Σ consists of charts from Σ into \mathbb{CP}^1 whose transition functions are elements of $\text{PSL}_2(\mathbb{C})$.
Let Σ be a surface. A *complex projective structure* on Σ consists of charts from Σ into \mathbb{CP}^1 whose transition functions are elements of $\text{PSL}_2(\mathbb{C})$

For $z \in U_1 \cap U_2$, $\phi_1(z) = g_{12} \phi_2(z)$
Development and holonomy

A more global approach

Using analytic continuation we can attempt to enlarge our charts
Development and holonomy

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

\[
\phi_1(U_1) \xrightarrow{g_{12} \circ \phi_2(U_2)} g_{12} \circ g_{23} \circ \phi_3(U_3) \\
\phi_2(U_2) \xrightarrow{g_{23} \circ \phi_3(U_3)} g_{12} \circ \phi_2(U_2) \\
\phi_3(U_3) \xrightarrow{g_{23}} g_{12} \circ \phi_2(U_2)
\]
Development and holonomy

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

\[\phi_k(U_k) \quad \phi_k \]

\[\phi_3(U_3) \quad g_23 \quad \phi_2(U_2) \quad \phi_2 \]

\[\phi_1(U_1) \quad g_12 \circ \phi_2(U_2) \quad g_12 \circ g_23 \circ \phi_3(U_3) \quad \phi_1 \]

Not well defined on \(\Sigma \), We are really defining \(\text{dev}_r \Sigma \):

\[D_{\mathbb{C}P^1}, \text{hol}_\pi \Sigma - \Gamma \cong \text{PSL}_2 \text{C} \]
Development and holonomy

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

\[
\text{dev} : \tilde{\Sigma} = \mathbb{D} \to \mathbb{CP}^1, \quad \text{hol} : \pi_1 \Sigma \cong \Gamma \to \text{PSL}_2(\mathbb{C})
\]
Development and holonomy

A more global approach

Using *analytic continuation* we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

\[
\text{dev} : \tilde{\Sigma} = \mathbb{D} \rightarrow \mathbb{CP}^1,
\]

\[
\text{hol} : \pi_1 \Sigma \cong \Gamma \rightarrow \text{PSL}_2(\mathbb{C})
\]

\[
[\ell] \mapsto g_{12} \cdots g_{m-1} m \phi_m(\ell(1))
\]
Development and holonomy

A more global approach

Using **analytic continuation** we can attempt to enlarge our charts

Not well defined on Σ, We are really defining

$$\text{dev} : \tilde{\Sigma} = \mathbb{D} \to \mathbb{C}P^1,$$

$$[\ell] \mapsto g_{12} \cdots g_{m-1} \phi_m(\ell(1))$$

$$\text{hol} : \pi_1 \Sigma \cong \Gamma \to \text{PSL}_2(\mathbb{C})$$

$$[\gamma] \mapsto (g_{12} \cdots g_{k1})$$
Development and holonomy

Properties

• dev is called a developing map
• hol is called a holonomy representation
• dev is called a *developing map*
• hol is called a *holonomy representation*
• dev is a hol-equivariant local diffeomorphism
 i.e. $\text{dev}(\gamma \cdot z) = \text{hol}(\gamma) \cdot \text{dev}(z)$ \(\forall z \in \mathbb{D}, \gamma \in \pi_1 M \)
Development and holonomy

Properties

- dev is called a *developing map*
- hol is called a *holonomy representation*
- dev is a hol-equivariant local diffeomorphism
 i.e. \(\text{dev}(\gamma \cdot z) = \text{hol}(\gamma) \cdot \text{dev}(z) \quad \forall z \in \mathbb{D}, \gamma \in \pi_1 M \)
- Constructing a complex projective structure is equivalent to constructing such an equivariant pair
Development and holonomy

Properties

• dev is called a *developing map*
• hol is called a *holonomy representation*
• dev is a hol-equivariant local diffeomorphism
 i.e. \(\text{dev}(\gamma \cdot z) = \text{hol}(\gamma) \cdot \text{dev}(z) \quad \forall z \in \mathbb{D}, \gamma \in \pi_1 M \)
• Constructing a complex projective structure is equivalent to constructing such an equivariant pair

Let \(\mathcal{P}(\Sigma) \) be space of all complex projective structures on \(\Sigma \)
Let $\phi : \mathbb{D} \to \mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0$$

(1)
Second order linear ODEs
Simply connected case

Let $\phi : \mathbb{D} \to \mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0 \quad (1)$$

Theorem (Cauchy)

For any $c_1, c_2 \in \mathbb{C}$ there is unique $u : \mathbb{D} \to \mathbb{C}$ solution to (1) satisfying the initial condition $u(0) = c_1$ and $u'(0) = c_2$
Let $\phi : \mathbb{D} \to \mathbb{C}$ be holomorphic and consider the differential equation

$$u'' + \frac{1}{2}\phi u = 0 \quad (1)$$

Theorem (Cauchy)

For any $c_1, c_2 \in \mathbb{C}$ there is unique $u : \mathbb{D} \to \mathbb{C}$ solution to (1) satisfying the initial condition $u(0) = c_1$ and $u'(0) = c_2$.

The solutions to (1) form a 2-dimensional vector space
Second order linear ODEs

A local approach

Let \(U \subset \mathbb{C} \) be connected, and let \(\phi : U \rightarrow \mathbb{C} \) be holomorphic.

For \(p \in U \) there is a basis \(\{ u_1, u_2 \} \) of local solutions to (1).

Using analytic continuation we can attempt to extend \(u_1 \) and \(u_2 \) to all of \(U \).

Problem: when we analytically continue around a loop \(\gamma \) we may arrive at new solutions \(p v_1, v_2 \) which are not \(u_1, u_2 \).
Second order linear ODEs
A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \rightarrow \mathbb{C}$ be holomorphic.

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1).

Using analytic continuation we can attempt to extend u_1 and u_2 to all of U.
Second order linear ODEs

A local approach

Let $U \subset \mathbb{C}$ be connected, and let $\phi : U \rightarrow \mathbb{C}$ be holomorphic.

For $p \in U$ there is a basis $\{u_1, u_2\}$ of local solutions to (1).

Using analytic continuation we can attempt to extend u_1 and u_2 to all of U.

![Diagram showing connected regions U_1, U_2, and U_3 with a point p]
Second order linear ODEs

A local approach

Let \(U \subset \mathbb{C} \) be connected, and let \(\phi : U \rightarrow \mathbb{C} \) be holomorphic.

For \(p \in U \) there is a basis \(\{ u_1, u_2 \} \) of local solutions to (1).

Using analytic continuation we can attempt to extend \(u_1 \) and \(u_2 \) to all of \(U \).

Problem: when we analytically continue around a loop \(\gamma \) we may arrive at new solutions \((v_1, v_2) \neq (u_1, u_2) \).
Second order linear ODEs
A global approach

Solution:

- There is $M(\gamma) \in \text{GL}_2(\mathbb{C})$ so that $M(\gamma) u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ.
Second order linear ODEs
A global approach

Solution:

- There is $M(\gamma) \in \text{GL}_2(\mathbb{C})$ so that $M(\gamma) u_i = v_i$
- $M(\gamma)$ only depends on homotopy class of γ.
- Let $\pi : \tilde{U} \rightarrow U$ be the universal covering
- Think of $u_i : \tilde{U} \rightarrow \mathbb{C}$ (defined on universal cover)
Second order linear ODEs
A global approach

Solution:

• There is $M(\gamma) \in \text{GL}_2(\mathbb{C})$ so that $M(\gamma)u_i = v_i$
• $M(\gamma)$ only depends on homotopy class of γ.
• Let $\pi : \tilde{U} \to U$ be the universal covering
• Think of $u_i : \tilde{U} \to \mathbb{C}$ \textit{(defined on universal cover)}
• For each $[\gamma] \in \pi_1(\Sigma) \cong \text{Deck}(\pi)$ and each $z \in \tilde{U},$

$$(u_i \circ [\gamma])(z) = M(\gamma)u_i(z)$$
Second order linear ODEs
A global approach

Solution:

- There is $\mathbf{M}(\gamma) \in \text{GL}_2(\mathbb{C})$ so that $\mathbf{M}(\gamma)u_i = v_i$
- $\mathbf{M}(\gamma)$ only depends on homotopy class of γ.
- Let $\pi : \tilde{U} \to U$ be the universal covering
- Think of $u_i : \tilde{U} \to \mathbb{C}$ \textit{(defined on universal cover)}
- For each $[\gamma] \in \pi_1(\Sigma) \cong \text{Deck}(\pi)$ and each $z \in \tilde{U}$,

 $$(u_i \circ [\gamma])(z) = \mathbf{M}(\gamma)u_i(z)$$

Get an equivariant pair:

$$ (u_1, u_2) : \tilde{U} \to \mathbb{C} \quad \quad \mathbf{M} : \pi_1(\Sigma) \to \text{GL}_2(\mathbb{C}) $$
An Example

Let $U = \mathbb{D}\setminus\{0\}$ and consider the equation

$$u'' + \frac{u}{4z^2} = 0$$

$u(z) = z^{1/2}$ is a “solution”
An Example

Let $U = \mathbb{D}\setminus\{0\}$ and consider the equation

$$u'' + \frac{u}{4z^2} = 0$$

$u(z) = z^{1/2}$ is a “solution” (*it’s multivalued*)
An Example

Let $U = \mathbb{D}\backslash\{0\}$ and consider the equation

$$u'' + \frac{u}{4z^2} = 0$$

$u(z) = z^{1/2}$ is a “solution” (\textit{it’s multivalued})

$\phi : \mathbb{H} \rightarrow U, t \mapsto \exp(2\pi it)$ is a universal cover

Deck group generated by $t \mapsto t + 1$
An Example

Let $U = \mathbb{D}\backslash\{0\}$ and consider the equation

$$u'' + \frac{u}{4z^2} = 0$$

$u(z) = z^{1/2}$ is a “solution” (*it’s multivalued*)

$\phi : \mathbb{H} \to U, \quad t \mapsto \exp(2\pi i t)$ is a universal cover

Deck group generated by $t \mapsto t + 1$

$$z^{1/2} = \exp \left(\log(z)/2 \right) = \exp(\pi i t)$$
An Example

Let $U = \mathbb{D}\setminus\{0\}$ and consider the equation

$$u'' + \frac{u}{4z^2} = 0$$

$u(z) = z^{1/2}$ is a “solution” (*it’s multivalued*)

$\phi : \mathbb{H} \to U, t \mapsto \exp(2\pi it)$ is a universal cover

Deck group generated by $t \mapsto t + 1$

$$z^{1/2} = \exp \left(\log(z) / 2 \right) = \exp(\pi it)$$

$$\exp(\pi i(t + 1)) = \exp(\pi i) \exp(\pi it) = -\exp(\pi it) = -z^{-1/2}$$
Relation between constructions
Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi : \Sigma \rightarrow \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \rightarrow \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$

- $[M] : \pi_1(\Sigma) \rightarrow \text{PGL}_2(\mathbb{C})$ (projectivized) monodromy.
Relation between constructions

Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi : \Sigma \to \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$

- $[M] : \pi_1(\Sigma) \to \text{PGL}_2(\mathbb{C})$ (projectivized) monodromy.

$\text{dev} : \mathbb{D} \to \mathbb{CP}^1$, $z \xrightarrow{\text{dev}} \frac{u_1(z)}{u_2(z)}$

Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
Relation between constructions

Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi : \Sigma \to \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + 1/2u\phi = 0$

- $[M] : \pi_1(\Sigma) \to \text{PGL}_2(\mathbb{C})$ (projectivized) monodromy.

$\text{dev} : \mathbb{D} \to \mathbb{CP}^1$, $z \mapsto \frac{u_1(z)}{u_2(z)}$ Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$(\text{dev} \circ \gamma)(z) = \frac{(u_1 \circ \gamma)(z)}{(u_2 \circ \gamma)(z)} = \frac{au_1(z) + bu_2(z)}{cu_1(z) + du_2(z)}$$

$$= \frac{a \cdot \text{dev}(z) + b}{c \cdot \text{dev}(z) + d} = [M(\gamma)] \cdot \text{dev}(z)$$
Relation between constructions

Equations give structure

Let $\Sigma = \mathbb{D}/\Gamma$ be hyperbolic surface, $\phi : \Sigma \to \mathbb{C}$ holomorphic

- $u_1, u_2 : \mathbb{D} \to \mathbb{C}$ a basis of solutions to $u'' + \frac{1}{2}u\phi = 0$

- $[M] : \pi_1(\Sigma) \to \text{PGL}_2(\mathbb{C})$ (projectivized) monodromy.

$\text{dev} : \mathbb{D} \to \mathbb{CP}^1$, $z \mapsto \frac{u_1(z)}{u_2(z)}$

Let $[M(\gamma)] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$(\text{dev} \circ \gamma)(z) = \frac{(u_1 \circ \gamma)(z)}{(u_2 \circ \gamma)(z)} = \frac{au_1(z) + bu_2(z)}{cu_1(z) + du_2(z)} = a \cdot \text{dev}(z) + b$$

$$= \frac{c \cdot \text{dev}(z) + d}{c \cdot \text{dev}(z) + d} = [M(\gamma)] \cdot \text{dev}(z)$$

$(\text{dev}, [M])$ give a complex projective structure on M.
Relations between the construction
Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of f is given by

$$S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2$$
Relations between the construction
Structure gives equations

If \(f : \mathbb{D} \rightarrow \mathbb{C} \) is holomorphic the \textit{Schwartzian} of \(f \) is given by

\[
S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2
\]

- If \(u_1, u_2 \) solve \(u'' + \frac{1}{2} \phi u = 0 \) then \(S(u_1/u_2) = \phi \)

 \textit{(ODE “inverts” Schwartzian)}
Relations between the construction
Structure gives equations

If \(f : \mathbb{D} \rightarrow \mathbb{C} \) is holomorphic the \textbf{Schwartzian} of \(f \) is given by

\[
S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2
\]

\begin{itemize}
 \item If \(u_1, u_2 \) solve \(u'' + \frac{1}{2} \phi u = 0 \) then \(S(u_1/u_2) = \phi \) (ODE “inverts” Schwartzian)
 \item \((\text{dev}, \rho) \) a complex projective structure on \(\Sigma \) let \(\tilde{\phi} = S(\text{dev}) \)
\end{itemize}
Relations between the construction
Structure gives equations

If \(f : \mathbb{D} \rightarrow \mathbb{C} \) is holomorphic the \textit{Schwartzian} of \(f \) is given by

\[
S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2
\]

- If \(u_1, u_2 \) solve \(u'' + \frac{1}{2} \phi u = 0 \) then \(S(u_1/u_2) = \phi \)
 \((\text{ODE “inverts” Schwartzian})\)
- \((\text{dev}, \rho)\) a complex projective structure on \(\Sigma \) let \(\tilde{\phi} = S(\text{dev}) \)
- Equivariance of \(\text{dev} \Rightarrow \pi_1(\Sigma)\)-invariance of \(\tilde{\phi} \),
 get \(\phi : \Sigma \rightarrow \mathbb{C} \)
Relations between the construction
Structure gives equations

If $f : \mathbb{D} \to \mathbb{C}$ is holomorphic the *Schwartzian* of f is given by

$$S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2} \phi u = 0$ then $S(u_1/u_2) = \phi$ *(ODE “inverts” Schwartzian)*
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(\text{dev})$
- Equivariance of dev $\Rightarrow \pi_1(\Sigma)$-invariance of $\tilde{\phi}$, get $\phi : \Sigma \to \mathbb{C}$
- Can form the ODE $u'' + \frac{1}{2} \phi u = 0$ on Σ
Relations between the construction
Structure gives equations

If $f : \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic the *Schwartzian* of f is given by

$$S(f) = \left(\frac{f''}{f'} \right)' - \frac{1}{2} \left(\frac{f''}{f'} \right)^2$$

- If u_1, u_2 solve $u'' + \frac{1}{2} \phi u = 0$ then $S(u_1/u_2) = \phi$ *(ODE “inverts” Schwartzian)*
- (dev, ρ) a complex projective structure on Σ let $\tilde{\phi} = S(\text{dev})$
- Equivariance of $\text{dev} \Rightarrow \pi_1(\Sigma)$-invariance of $\tilde{\phi}$, get $\phi : \Sigma \rightarrow \mathbb{C}$
- Can form the ODE $u'' + \frac{1}{2} \phi u = 0$ on Σ
 dev comes from a solution to this equation
Good News: Have constructions that relate an analytic object (ODEs) to a geometric object (complex projective structures)
Good News: Have constructions that relate an analytic object (ODEs) to a geometric object (complex projective structures)

Bad News: The correspondence is opaque:
 Analytic properties \leftrightarrow Geometric properties
Another Correspondence

Grafting

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$
Another Correspondence

Grafting

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$

We can produce a new complex projective structure, $\text{Gr}_{t\gamma}(X)$ on Σ by \textit{grafting} in a Euclidean cylinder of height t

Figure: Picture from Dumas, \textit{Complex Projective Structures}
Another Correspondence

Grafting

Let $\Sigma = \mathbb{D}/\Gamma$ hyperbolic, $\gamma \subset \Sigma$ a closed geodesic, $t \in \mathbb{R}^+$

We can produce a new complex projective structure, $\text{Gr}_{t\gamma}(X)$ on Σ by \textit{grafting} in a Euclidean cylinder of height t

Let S be free homotopy class of s.c.c.'s. Get

$$\text{Gr} : S \times \mathbb{R}^+ \times \mathcal{T}(\Sigma) \rightarrow \mathcal{P}(\Sigma)$$
Thurston’s Theorem

Construction produces all complex projective structures
Thurston’s Theorem

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be measured laminations on Σ
(limits of weighted multicurves)
Thurston’s Theorem

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ

(limits of weighted multicurves)

Theorem (Thurston)

$$\text{Gr} : \mathcal{ML}(\Sigma) \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

is a homeomorphism.
Thurston’s Theorem

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ
(limits of weighted multicurves)

Theorem (Thurston)

$$\text{Gr} : \mathcal{ML}(\Sigma) \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

is a homeomorphism.

Good News: Every complex projective structure arises from grafting a hyperbolic surface.
Thurston’s Theorem

Construction produces all complex projective structures

Let $\mathcal{ML}(\Sigma)$ be *measured laminations* on Σ
(limits of weighted multicurves)

Theorem (Thurston)

$$\text{Gr} : \mathcal{ML}(\Sigma) \times \mathcal{T}(\Sigma) \to \mathcal{P}(\Sigma)$$

is a homeomorphism.

Good News: Every complex projective structure arises from grafting a hyperbolic surface.

Bad News: The inverse procedure is fairly non-constructive.
A transparent case

Let $\Sigma = \Sigma_{0,3}$ (thrice punctured sphere)

Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$

σ is:

- tame if dev can be extended (meromorphically) to the punctures
- relatively elliptic if holonomy of peripheral curves is elliptic (conjugate to rotation $z \mapsto e^{i\theta}z$)
- non-degenerate if $\rho_p \pi_1 \Sigma_q$ has no finite orbits (e.g. no global fixed points)

Let $\mathcal{P}_d \Sigma_q$ be the space of tame, relatively elliptic, and non-degenerate structures on Σ
A transparent case

Let $\Sigma = \Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

- **tame** if dev can be extended (meromorphically) to the punctures
A transparent case

Let $\Sigma = \Sigma_{0,3}$ (thrice punctured sphere)
Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$
σ is:

- **tame** if dev can be extended (meromorphically) to the punctures
- **relatively elliptic** if holonomy of peripheral curves is elliptic (conjugate to rotation $z \mapsto e^{i\theta}z$, $\theta \in \mathbb{R}$)
- **non-degenerate** if $\rho_{\pi_1(\Sigma)}$ has no finite orbits (e.g. no global fixed points)
A transparent case

Let $\Sigma = \Sigma_{0,3}$ (*thrice punctured sphere*)
Let $\sigma = (\text{dev}, \rho) \in \mathcal{P}(\Sigma)$

σ is:

- **tame** if dev can be extended (meromorphically) to the punctures
- **relatively elliptic** if holonomy of peripheral curves is elliptic (conjugate to rotation $z \leftrightarrow e^{i\theta}z$, $\theta \in \mathbb{R}$)
- **non-degenerate** if $\rho(\pi_1 \Sigma)$ has no finite orbits (e.g. no global fixed points)

Let $\mathcal{P}^\odot(\Sigma)$ be the space of tame, relatively elliptic, and non-degenerate structures on Σ
Examples
Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ. (*triangular structures*)
Examples

Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ. *(triangular structures)*
Examples

Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ. (*triangular structures*)

\[
\pi_1(\Sigma) \cong \langle \alpha, \beta \rangle, \\
\rho(\alpha) = R(C_2)R(C_3) \cong (z \mapsto e^{2i\theta}z), \\
\rho(\beta) = R(C_3)R(C_1) \cong (z \mapsto e^{2i\phi}z)
\]
Examples

Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ. (*triangular structures*)
Examples

Triangular structures

Given a configuration of 3 circles in \mathbb{CP}^1 we can build (several) complex projective structures on Σ. (triangular structures)
Examples
Triangular structures

Given a configuration of 3 circles in $\mathbb{C}P^1$ we can build (several) complex projective structures on Σ. *(triangular structures)*

The same circles support several different developing maps.
Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.
Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of \mathbb{CP}^1
Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of \mathbb{CP}^1

- *Edge grafting* (blue)
- *Core grafting* (red)
Grafting again

Given a triangular structure we can do 2 different types of grafting along embedded arcs.

Idea: Slit open surface along an embedded arc and glue in copy of $\mathbb{C}P^1$

- **Edge grafting** (blue)
- **Core grafting** (red)

This grafting is discrete, not continuous!
Grafting Example

Edge grafting

How does grafting change the developing map?
Grafting Example

Edge grafting

How does grafting change the developing map?

\[D \xrightarrow{\tau} \Delta \xrightarrow{\tau'} D \]

\[\text{Gr} \]
Grafting Example

How does grafting change the developing map?

How does grafting change the holonomy?

It doesn’t!!
Theorem 1

Theorem 1 (B-Bowers-Casella-Ruffoni)

Let $\Sigma = \Sigma_{0,3}$ and let $\tau \in \mathcal{P}^\odot(\Sigma)$. Then τ is obtained from a triangular structure by a finite sequence of edge and core graftings.

The sequence of graftings and the triangular structure can be computed explicitly (Algorithmic).
Sketch of proof

- If \(\tau = (\text{dev}, \rho) \), then near each puncture dev looks like \(z \mapsto z^{\alpha/2\pi} \), for \(\alpha \in \mathbb{R} \) (*punctures have winding number*)
Sketch of proof

- If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^\circ(\Sigma)$ (Complex analysis)
Sketch of proof

- If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}(\Sigma)$ (Complex analysis)
- Let $(2a, 2b, 2c)$ be winding numbers of τ
Sketch of proof

- If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (*punctures have winding number*)
- Winding numbers determine $\tau \in \mathcal{P}^{\circ}(\Sigma)$ (*Complex analysis*)
- Let $(2a, 2b, 2c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2\pi, 2\pi)$ and core grafting increases winding number by 4π
Sketch of proof

• If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)

• Winding numbers determine $\tau \in \mathcal{P}^\circ(\Sigma)$ (Complex analysis)

• Let $(2a, 2b, 2c)$ be winding numbers of τ

• Edge grafting increases winding numbers by $(2\pi, 2\pi)$ and core grafting increases winding number by 4π

• If winding numbers are small there is a triangular structure with winding number $(2a, 2b, 2c)$ (angles are a, b, c)
Sketch of proof

- If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^\odot(\Sigma)$ (Complex analysis)
- Let $(2a, 2b, 2c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2\pi, 2\pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number $(2a, 2b, 2c)$ (angles are a, b, c)
- If some winding numbers are big can find, a', b', c' small, and $k_a, k_b, k_c \in \mathbb{N}$, $(a', b', c') = (a, b, c) - \pi(k_a, k_b, k_c)$ so that there is a triangular structure with winding numbers $(2a', 2b', 2c')$ that can be grafted to τ.
Sketch of proof

- If $\tau = (\text{dev}, \rho)$, then near each puncture dev looks like $z \mapsto z^{\alpha/2\pi}$, for $\alpha \in \mathbb{R}$ (punctures have winding number)
- Winding numbers determine $\tau \in \mathcal{P}^{\circ}(\Sigma)$ (Complex analysis)
- Let $(2a, 2b, 2c)$ be winding numbers of τ
- Edge grafting increases winding numbers by $(2\pi, 2\pi)$ and core grafting increases winding number by 4π
- If winding numbers are small there is a triangular structure with winding number $(2a, 2b, 2c)$ (angles are a, b, c)
- If some winding numbers are big can find, a', b', c' small, and $k_a, k_b, k_c \in \mathbb{N}$, $(a', b', c') = (a, b, c) - \pi(k_a, k_b, k_c)$ so that there is a triangular structure with winding numbers $(2a', 2b', 2c')$ that can be grafted to τ. (a', b', c') determine triangular structure, (k_a, k_b, k_c) determine grafting.
A typical example

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$
A typical example

Winding numbers are \(2a = 9\pi, 2b = 3\pi, 2c = \pi\)

Then \(2a' = 3\pi, 2b' = \pi, 2c' = \pi, k_a = 3, k_b = 1, k_c = 0\)
A typical example

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$
A typical example

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$
A typical example

Winding numbers are $2a = 9\pi$, $2b = 3\pi$, $2c = \pi$

Then $2a' = 3\pi$, $2b' = \pi$, $2c' = \pi$, $k_a = 3$, $k_b = 1$, $k_c = 0$
Complex analytic perspective

How do analytic properties of $u'' + 1/2 \phi u = 0$ correspond to geometric properties of complex projective structures?
Complex analytic perspective

How do analytic properties of \(u'' + \frac{1}{2} \phi u = 0 \) correspond to geometric properties of complex projective structures??

\[\Sigma_{0,3} \cong \mathbb{CP}^1 \backslash \{0, 1, \infty\} \]

Theorem 2 (B-Bowers-Casella-Ruffoni)

\[\tau \in \mathcal{P}^\circ (\Sigma_{0,3}) \text{ iff } \tau \text{ comes from a solution to } u'' + \frac{1}{2} \phi u = 0 \]

where \(\phi : \mathbb{CP}^1 \rightarrow \mathbb{C} \) is meromorphic with poles of order \(\leq 2 \) at \(\{0, 1, \infty\} \).
Complex analytic perspective

How do analytic properties of $u'' + 1/2\phi u = 0$ correspond to geometric properties of complex projective structures??

$\Sigma_{0,3} \cong \mathbb{CP}^1 \setminus \{0, 1, \infty\}$

Theorem 2 (B-Bowers-Casella-Ruffoni)

$\tau \in \mathcal{P}^\odot(\Sigma_{0,3})$ iff τ comes from a solution to $u'' + 1/2\phi u = 0$ where $\phi : \mathbb{CP}^1 \to \mathbb{C}$ is meromorphic with poles of order ≤ 2 at $\{0, 1, \infty\}$.

We can determine the winding numbers from the poles of ϕ!!
Determining winding number

- Near \(z = 0 \), \(\phi(z) = \frac{a}{z^2} + O(1/z) \)
Determining winding number

• Near $z = 0$, $\phi(z) = \frac{a}{z^2} + O(1/z)$
• Let r_1, r_2 solutions to $r(r - 1) + \frac{a}{2} = 0$
Determining winding number

- Near $z = 0$, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r - 1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form

 \[u_1(z) = z^{r_1} h_1(z), \quad u_2 = z^{r_2} h_2(z) \]

 where $h_i(z)$ analytic and non-zero near $z = 0$.

 (not quite if $r_1 - r_2 \in \mathbb{Z}$)
Determining winding number

- Near $z = 0$, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r - 1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form
 \[
 u_1(z) = z^{r_1} h_1(z), \quad u_2 = z^{r_2} h_2(z)
 \]
 where $h_i(z)$ analytic and non-zero near $z = 0$.
 \((not\ quite\ if\ r_1 - r_2 \in \mathbb{Z})\)
- $dev(z) = \frac{u_1(z)}{u_2(z)} = z^\theta M(z)$ where $\theta = r_1 - r_2$, $M(z)$ analytic and non-zero at $z = 0$
Determining winding number

- Near $z = 0$, $\phi(z) = \frac{a}{z^2} + O(1/z)$
- Let r_1, r_2 solutions to $r(r - 1) + \frac{a}{2} = 0$
- Generically, solutions to $u'' + 1/2\phi u = 0$ are of form

$$u_1(z) = z^{r_1} h_1(z), \quad u_2 = z^{r_2} h_2(z)$$

where $h_i(z)$ analytic and non-zero near $z = 0$.

not quite if $r_1 - r_2 \in \mathbb{Z}$

- $\text{dev}(z) = \frac{u_1(z)}{u_2(z)} = z^\theta M(z)$ where $\theta = r_1 - r_2$, $M(z)$ analytic and non-zero at $z = 0$
- $2\pi \theta$ is winding number and $\theta = \pm \sqrt{1 - 2a}$
Can we give specific relationship between geometric/analytic properties for general non-compact Σ?
Remaining questions

Can we give specific relationship between geometric/analytic properties for general non-compact Σ?

- Not an obvious candidate to replace triangular structures
Can we give specific relationship between geometric/analytic properties for general non-compact Σ?

- Not an obvious candidate to replace triangular structures
- Winding numbers don’t determine structure

(\textit{complex structure not unique})
Thank you!