Gluing Equations for Real Projective Structures on 3-manifolds

> Sam Ballas Florida State University (joint with A. Casella)

Trends in Low Dimensional Topology June 23, 2020

Overview

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

- 1. Geometric Structures
 - What are they?
 - Projective structures
 - Why are they interesting?
 - How do we construct them?

Overview

- 1. Geometric Structures
 - What are they?
 - Projective structures
 - Why are they interesting?
 - How do we construct them?
- 2. Gluing Equations
 - Tool for constructing projective structures
 - Philosophy: Gluing equations "discretize" the problem of constructing projective structures

- Examples
 - · Thurston's equations
 - B-Casella projective gluing equations

Super accurate historical reenactment

Erlangen, Germany (circa 1872)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Super accurate historical reenactment

Erlangen, Germany (circa 1872)

▲ロト ▲□ ト ▲ヨト ▲ヨト ヨー の々で

Super accurate historical reenactment

A *geometry* is a pair (X, G) of a manifold X with a transitive and analytic action of a group G

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Super accurate historical reenactment

A *geometry* is a pair (X, G) of a manifold X with a transitive and analytic action of a group G

Geometry is the study of properties of X that are invariant under G

Туре	Geometries	Geometric properties
Metric	$(\mathbb{S}^n, Isom(\mathbb{S}^n))$	distance, angles, volume
Geometries	$(\mathbb{E}^n, Isom(\mathbb{E}^n))$	
	$(\mathbb{H}^n, Isom(\mathbb{H}^n))$	

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Туре	Geometries	Geometric properties
Metric	$(\mathbb{S}^n, Isom(\mathbb{S}^n))$	distance, angles, volume
Geometries	$(\mathbb{E}^n, Isom(\mathbb{E}^n))$	
	$(\mathbb{H}^n, Isom(\mathbb{H}^n))$	
Affine	$(\mathbb{R}^n, \mathbb{R}^n \rtimes \operatorname{GL}_n)$	straight, parallelism
Geometries	$(\mathbb{R}^n,\mathbb{R}^n\rtimes O(n-1,1))$	(light/time/space-like)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Туре	Geometries	Geometric properties
Metric	$(\mathbb{S}^n, Isom(\mathbb{S}^n))$	distance, angles, volume
Geometries	$(\mathbb{E}^n, Isom(\mathbb{E}^n))$	
	$(\mathbb{H}^n, Isom(\mathbb{H}^n))$	
Affine Geometries	$(\mathbb{R}^n, \mathbb{R}^n \rtimes GL_n)$ $(\mathbb{R}^n, \mathbb{R}^n \rtimes O(n-1, 1))$	straight, parallelism (light/time/space-like)
Projective Geometry	$(\mathbb{RP}^n, PGL_{n+1})$	straight incidence, cross ratio

What is it?

- \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1}
- $PGL_{n+1} = GL_{n+1}(\mathbb{R})/scaling$
- *(Real) projective geometry* is $(\mathbb{RP}^n, PGL_{n+1})$ geometry

What is it?

- \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1}
- $PGL_{n+1} = GL_{n+1}(\mathbb{R})/scaling$
- *(Real) projective geometry* is $(\mathbb{RP}^n, PGL_{n+1})$ geometry

Why should I like it?

うつん 川 エー・エー・ エー・ ひゃう

All my favorite geometries are *subgeometries* (i.e. compatible embeddings of spaces and groups)

What is it?

- \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1}
- $PGL_{n+1} = GL_{n+1}(\mathbb{R})/scaling$
- *(Real) projective geometry* is $(\mathbb{RP}^n, PGL_{n+1})$ geometry

Why should I like it?

うつん 川 エー・エー・ エー・ ひゃう

All my favorite geometries are *subgeometries* (i.e. compatible embeddings of spaces and groups)

•
$$\mathbb{R}^n \hookrightarrow \mathbb{RP}^n := \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}, \quad Ax + b \mapsto \left[\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \right]$$

•
$$\mathbb{R}^n \hookrightarrow \mathbb{RP}^n := \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}, \quad Ax + b \mapsto \left[\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \right]$$

Туре	Geometries	Geometric properties
Metric	$(\mathbb{S}^n, Isom(\mathbb{S}^n))$	distance, angles, volume
Geometries	$(\mathbb{E}^n, Isom(\mathbb{E}^n))$	
	$(\mathbb{H}^n, Isom(\mathbb{H}^n))$	
Affine	$(\mathbb{R}^n, \mathbb{R}^n \rtimes \mathrm{GL}_n)$	straight, parallelism
Geometries	$(\mathbb{R}^n,\mathbb{R}^n\rtimes O(n-1,1))$	(light/time/space-like)
Projective	$(\mathbb{RP}^n, PGL_{n+1})$	straight
Geometry		incidence, cross ratio

What is it?

- \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1}
- $PGL_{n+1} = GL_{n+1}(\mathbb{R})/scaling$
- (Real) projective geometry is $(\mathbb{RP}^n, PGL_{n+1})$ geometry

Why should I like it?

うつん 川 エー・エー・ エー・ ひゃう

All my favorite geometries are *subgeometries* (i.e. compatible embeddings of spaces and groups)

•
$$\mathbb{R}^n \hookrightarrow \mathbb{RP}^n := \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}, \quad Ax + b \mapsto \left[\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \right]$$

•
$$\mathbb{H}^n \hookrightarrow \mathbb{RP}^n$$
 (Klein model),
Isom⁺(\mathbb{H}^n) $\cong O(n, 1)^\circ \subset \operatorname{GL}_{n+1} \mapsto \operatorname{PGL}_{n+1}$

What is it?

- \mathbb{RP}^n is the space of lines through the origin in \mathbb{R}^{n+1}
- $PGL_{n+1} = GL_{n+1}(\mathbb{R})/scaling$
- (Real) projective geometry is $(\mathbb{RP}^n, PGL_{n+1})$ geometry

Why should I like it?

All my favorite geometries are *subgeometries* (i.e. compatible embeddings of spaces and groups)

•
$$\mathbb{R}^n \hookrightarrow \mathbb{RP}^n := \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}, \quad Ax + b \mapsto \left[\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \right]$$

• $\mathbb{H}^n \hookrightarrow \mathbb{RP}^n$ (Klein model), $\mathsf{Isom}^+(\mathbb{H}^n) \cong O(n,1)^\circ \subset \mathsf{GL}_{n+1} \mapsto \mathsf{PGL}_{n+1}$

Gives unified setting to study different geometries

Let *M* be an *n*-manifold

A *(real) projective structure* on *M* is a (maximal) atlas of charts from *M* into \mathbb{RP}^n whose transition functions are elements of PGL_{n+1}

Let *M* be an *n*-manifold

A *(real) projective structure* on *M* is a (maximal) atlas of charts from *M* into \mathbb{RP}^n whose transition functions are elements of PGL_{n+1}

Let *M* be an *n*-manifold

A *(real) projective structure* on *M* is a (maximal) atlas of charts from *M* into \mathbb{RP}^n whose transition functions are elements of PGL_{n+1}

Let *M* be an *n*-manifold

A *(real) projective structure* on *M* is a (maximal) atlas of charts from *M* into \mathbb{RP}^n whose transition functions are elements of PGL_{n+1}

Analyticity ensures that transition functions are unique!

A more global approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A more global approach

A more global approach

A more global approach

We are really defining

dev : $\widetilde{M} \to \mathbb{RP}^n$, hol : $\pi_1 M \to \mathsf{PGL}_{n+1}$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

A more global approach

We are really defining

dev :
$$\widetilde{M} \to \mathbb{RP}^n$$
, hol : $\pi_1 M \to \mathsf{PGL}_{n+1}$
 $[\ell] \mapsto g_{12} \dots g_{m-1m} \phi_m(\ell(1))$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

A more global approach

We are really defining

$$\begin{split} \operatorname{dev} &: \widetilde{M} \to \mathbb{RP}^n, & \operatorname{hol} : \pi_1 M \to \operatorname{PGL}_{n+1} \\ & [\ell] \mapsto g_{12} \dots g_{m-1m} \phi_m(\ell(1)) & [\gamma] \mapsto g_{12} \dots g_{k1} \end{split}$$

▲ロト ▲園 ト ▲ 国 ト ▲ 国 - の Q ()・

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

- dev is called a *developing map*
- hol is called a holonomy representation

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism i.e. dev $(\gamma \cdot x) = hol(\gamma) \cdot dev(x) \quad \forall x \in \widetilde{M}, \gamma \in \pi_1 M$

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism i.e. dev $(\gamma \cdot x) = hol(\gamma) \cdot dev(x) \quad \forall x \in \widetilde{M}, \gamma \in \pi_1 M$
- We can construct a projective structure from any such equivariant pair

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

- dev is called a *developing map*
- hol is called a holonomy representation
- dev is a hol-equivariant local diffeomorphism i.e. dev $(\gamma \cdot x) = hol(\gamma) \cdot dev(x) \quad \forall x \in \widetilde{M}, \gamma \in \pi_1 M$
- We can construct a projective structure from any such equivariant pair

Moral: To construct a projective structure you JUST need to find a representation $\rho : \pi_1 M \to \text{PGL}_{n+1}$ and a ρ -equivariant local diffeomorphism $D : \widetilde{M} \to \mathbb{RP}^n$

Gluing equations

Ideal triangulations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let M be a non-compact 3-manifold with a finite ideal (no vertices) triangulation ${\cal T}$

Gluing equations

Ideal triangulations

Let *M* be a non-compact 3-manifold with a finite ideal (no vertices) triangulation \mathcal{T}

Ex: Figure-8 knot complement

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Gluing equations Variables and equations

Idea: Restrict charts so that their domains are tetrahedra in $\mathcal T$ and the maps are simplicial maps to "straight" tetrahedra in \mathbb{RP}^3

Idea: Restrict charts so that their domains are tetrahedra in $\mathcal T$ and the maps are simplicial maps to "straight" tetrahedra in \mathbb{RP}^3

Variables

• Up to projective transformation a chart encoded by finitely many *shape parameters*

Gluing equations

Idea: Restrict charts so that their domains are tetrahedra in $\mathcal T$ and the maps are simplicial maps to "straight" tetrahedra in \mathbb{RP}^3

Variables

• Up to projective transformation a chart encoded by finitely many *shape parameters*

Equations

- Constraints must be imposed on shape parameters to ensure compatibility of charts (existence of transition maps)
 - i. Face equations: Ensure two tetrahedra can be glued together along a face
 - ii. Edge equations: Ensure that the tetrahedra abutting an edge in ${\mathcal T}$ close up in ${\mathbb R \mathbb P}^3$

Thurston's gluing equations

- Klein model gives $\mathbb{H}^3 \subset \mathbb{RP}^3$ and identifies $\partial \mathbb{H}^3$ with $\mathbb{C} \cup \infty$
- Fact: $\text{Isom}^+(\mathbb{H}^3)$ acts simply triply transitively on $\partial \mathbb{H}^3$

- Klein model gives $\mathbb{H}^3 \subset \mathbb{RP}^3$ and identifies $\partial \mathbb{H}^3$ with $\mathbb{C} \cup \infty$
- Fact: $\text{Isom}^+(\mathbb{H}^3)$ acts simply triply transitively on $\partial \mathbb{H}^3$
 - Ideal tetrahedra in ℍ³ (modulo isometry) encoded by z ∈ C, (*Thurston parameters*)

- Klein model gives $\mathbb{H}^3 \subset \mathbb{RP}^3$ and identifies $\partial \mathbb{H}^3$ with $\mathbb{C} \cup \infty$
- Fact: $\text{Isom}^+(\mathbb{H}^3)$ acts simply triply transitively on $\partial \mathbb{H}^3$
 - Ideal tetrahedra in ℍ³ (modulo isometry) encoded by z ∈ C, (*Thurston parameters*)

- Klein model gives $\mathbb{H}^3 \subset \mathbb{RP}^3$ and identifies $\partial \mathbb{H}^3$ with $\mathbb{C} \cup \infty$
- Fact: $\text{Isom}^+(\mathbb{H}^3)$ acts simply triply transitively on $\partial \mathbb{H}^3$
 - Ideal tetrahedra in ℍ³ (modulo isometry) encoded by z ∈ C, (*Thurston parameters*)
 - Given two ideal tetrahedra, there is a unique way to glue them along any face

Given a collection of ideal tetrahedra, we can glue them together around an edge

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Given a collection of ideal tetrahedra, we can glue them together around an edge

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Given a collection of ideal tetrahedra, we can glue them together around an edge

Given a collection of ideal tetrahedra, we can glue them together around an edge

Given a collection of ideal tetrahedra, we can glue them together around an edge

In order for the cycle to close up we need to impose an equation

<ロト < 同ト < 三ト < 三ト < 三 ・ つへへ</p>

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations (*Thurston's gluing equations*)

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations (*Thurston's gluing equations*)

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

- Variables:
 - 1 variable for each tetrahedron of ${\cal T}$

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

(Thurston's gluing equations)

- Variables:
 - 1 variable for each tetrahedron of ${\cal T}$
- Equations:
 - no face equations
 - 1 edge equation for each edge in \mathcal{T} .

Given an orientable 3-manifold M with an ideal triangulation \mathcal{T} we get a system of complex equations

(Thurston's gluing equations)

- Variables:
 - 1 variable for each tetrahedron of ${\cal T}$
- Equations:
 - no face equations
 - 1 edge equation for each edge in \mathcal{T} .

A solution to these equations is *geometric* if each component has positive imaginary part (No inside out tetrahedra)

うつん 川 エー・エー・ エー・ ひゃう

Each geometric solution to Thurston's gluing equations gives rise to a hyperbolic structure:

• A developing map dev : $\widetilde{M} \to \mathbb{H}^3$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Each geometric solution to Thurston's gluing equations gives rise to a hyperbolic structure:

- A developing map dev : $\widetilde{M} \to \mathbb{H}^3$
- A holonomy representation $\rho : \pi_1(M) \to \text{Isom}^+(\mathbb{H}^3)$.

うつん 川 エー・エー・ エー・ ひゃう

Each geometric solution to Thurston's gluing equations gives rise to a hyperbolic structure:

- A developing map dev : $\widetilde{M} \to \mathbb{H}^3$
- A holonomy representation $\rho : \pi_1(M) \to \text{Isom}^+(\mathbb{H}^3)$.

うつん 川 エー・エー・ エー・ ひゃう

Gluing equations ensure this is well defined and equivariant!

Naive approach for projective structures

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Let's just try to build tetrahedra in \mathbb{RP}^3 like we did for \mathbb{H}^3 .

Naive approach for projective structures

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Let's just try to build tetrahedra in \mathbb{RP}^3 like we did for \mathbb{H}^3 .

Good news

- All tetrahedra are projectively equivalent
- Any two tetrahedra can be glued along a face

Naive approach for projective structures

Let's just try to build tetrahedra in \mathbb{RP}^3 like we did for \mathbb{H}^3 .

Good news

- All tetrahedra are projectively equivalent
- Any two tetrahedra can be glued along a face

Bad news

- Stabilizer of a tetrahedra is non-trivial (not analytic)
- Tetrahedra in RP³ are not uniquely determined by their vertices

うつん 川 エー・エー・ エー・ ひゃう

Naive approach for projective structures Let's just try to build tetrahedra in \mathbb{RP}^3 like we did for \mathbb{H}^3 .

Good news

- All tetrahedra are
 projectively equivalent
- Any two tetrahedra can be glued along a face

Bad news

- Stabilizer of a tetrahedra is non-trivial (not analytic)
- Tetrahedra in RP³ are not uniquely determined by their vertices

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Naive approach for projective structures Let's just try to build tetrahedra in \mathbb{RP}^3 like we did for \mathbb{H}^3 .

Good news

- All tetrahedra are projectively equivalent
- Any two tetrahedra can be glued along a face

Bad news

- Stabilizer of a tetrahedra is non-trivial (not analytic)
- Tetrahedra in RP³ are not uniquely determined by their vertices

(日) (字) (日) (日) (日)

Tetrahedra of flags

A tetrahedron of (incomplete) flags in \mathbb{RP}^3 consists of

- 4 points in \mathbb{RP}^3
- A plane through each point
- There is a unique tetrahedron in \mathbb{RP}^3 whose vertices are the points and whose interior is disjoint from the planes

・ロト ・四ト ・日ト ・日下

Tetrahedra of flags

A tetrahedron of (incomplete) flags in \mathbb{RP}^3 consists of

- 4 points in \mathbb{RP}^3
- A plane through each point
- There is a unique tetrahedron in \mathbb{RP}^3 whose vertices are the points and whose interior is disjoint from the planes

Don't have the previous problems for tet of flags

• Tetrahedron of flags has trivial PGL₄ stabilizer.

うつん 川 エー・エー・ エー・ ひゃう

 A tetrahedron of flags determines a unique tetrahedron in RP³

Tetrahedra in \mathbb{RP}^3 are not determined by vertices

 \mathbb{H}^3 allows us to single out one of these tetrahedra

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

An ideal tet in \mathbb{H}^3 determines a tet of flags via tangent planes

An ideal tet in \mathbb{H}^3 determines a tet of flags via tangent planes A tet of flags doesn't require planes to be tangent to \mathbb{H}^3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Each tetrahedron of flags comes with coordinates

Projective gluing equations Variables

Each tetrahedron of flags comes with coordinates

• 6 Edge coordinates: 1 per edge: Describe the shape of the tetrahedron of flags (not all independent!)

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Each tetrahedron of flags comes with coordinates

- 6 Edge coordinates: 1 per edge: Describe the shape of the tetrahedron of flags (not all independent!)
- 4 Gluing coordinates: 1 per face: Describe how adjacent tetrahedra of flags will be attached.

All coordinates are positive real numbers

うつう 山 ふ 山 マ ふ 山 マ ふ 山 マ う く 日 マ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

There are two types of equations

There are two types of equations

• Face equations (2 per face)

There are two types of equations

• Face equations (2 per face)

(日) (字) (日) (日) (日)

Edge equations (5 per edge)
 Only involve variables "near edge"

Projective gluing equations The projective structure

Each solution to the projective gluing equations gives rise to a projective structure:

• A developing map dev : $\widetilde{M} \to \mathbb{RP}^3$

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Projective gluing equations The projective structure

Each solution to the projective gluing equations gives rise to a projective structure:

- A developing map dev : $\widetilde{M} \to \mathbb{RP}^3$
- A holonomy representation $\rho : \pi_1(M) \rightarrow \text{PGL}_4$.

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Projective gluing equations The projective structure

Each solution to the projective gluing equations gives rise to a projective structure:

- A developing map dev : $\widetilde{M} \to \mathbb{RP}^3$
- A holonomy representation $\rho : \pi_1(M) \rightarrow \text{PGL}_4$.

Gluing equations ensure this is well defined and equivariant!

Nice properties

- Get lots of interesting projective structures: hyperbolic, anti de-Sitter, convex projective
- Geometric properties of structures manifest as algebraic properties of solutions.
- Numerically computing solutions can be automated (a la SnapPy)

・ ロ ト ス 厚 ト ス ヨ ト ・

Future directions

- Neumann-Zagier relationships
- Connections to quivers
- Geometric transitions
- Degenerations and tropicalizations

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●