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Super accurate historical reenactment
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A geometry is a pair pX ,Gq of a manifold X with a transitive and
analytic action of a group G
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under G



What is geometry?
Super accurate historical reenactment

Erlangen, Germany
(circa 1872)

Hey Felix,
 what is geometry?

Geometry is the study
of space and 

their symmetries

A geometry is a pair pX ,Gq of a manifold X with a transitive and
analytic action of a group G

Geometry is the study of properties of X that are invariant
under G



What is geometry?
Super accurate historical reenactment

Erlangen, Germany
(circa 1872)

Hey Felix,
 what is geometry?

Geometry is the study
of space and 

their symmetries

A geometry is a pair pX ,Gq of a manifold X with a transitive and
analytic action of a group G

Geometry is the study of properties of X that are invariant
under G



What is geometry?
Super accurate historical reenactment

Erlangen, Germany
(circa 1872)

Hey Felix,
 what is geometry?

Geometry is the study
of space and 

their symmetries

A geometry is a pair pX ,Gq of a manifold X with a transitive and
analytic action of a group G

Geometry is the study of properties of X that are invariant
under G



Some examples

Type Geometries Geometric properties
Metric
Geometries

pSn, IsompSnqq

pEn, IsompEnqq

pHn, IsompHnqq

distance, angles, volume

Affine
Geometries

pRn,Rn ¸GLnq

pRn,Rn
¸Opn´ 1, 1qq

straight, parallelism
(light/time/space-like)

Projective
Geometry

pRPn,PGLn`1q straight
incidence, cross ratio
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Projective geometry

What is it?
• RPn is the space of lines through the origin in Rn`1

• PGLn`1 “ GLn`1pRq{scaling
• (Real) projective geometry is pRPn,PGLn`1q geometry

Why should I like it?

All my favorite geometries are subgeometries
(i.e. compatible embeddings of spaces and groups)

• Rn ãÑ RPn :“ Rn \ RPn´1, Ax ` b ÞÑ
„ˆ

A b
0 1

˙
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Real projective structures
Definition

Let M be an n-manifold
A (real) projective structure on M is a (maximal) atlas of charts
from M into RPn whose transition functions are elements of
PGLn`1

Analyticity ensures that transition functions are unique!
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Development and holonomy
A more global approach

We are really defining

dev : rM Ñ RPn, hol : π1M Ñ PGLn`1

r`s ÞÑ g12 . . . gm´1mφmp`p1qq rγs ÞÑ g12 . . . gk1
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Development and holonomy
Properties

• dev is called a developing map
• hol is called a holonomy representation

• dev is a hol-equivariant local diffeomorphism
i.e. devpγ ¨ xq “ holpγq ¨ devpxq @x P rM, γ P π1M

• We can construct a projective structure from any such
equivariant pair

Moral: To construct a projective structure you JUST need to
find a representation ρ : π1M Ñ PGLn`1 and a ρ-equivariant
local diffeomorphism D : rM Ñ RPn
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Gluing equations
Ideal triangulations

Let M be a non-compact 3-manifold with a finite ideal (no
vertices) triangulation T

Ex: Figure-8 knot complement

1

24

3

1

24

3



Gluing equations
Ideal triangulations

Let M be a non-compact 3-manifold with a finite ideal (no
vertices) triangulation T

Ex: Figure-8 knot complement

1

24

3

1

24

3



Gluing equations
Variables and equations

Idea: Restrict charts so that their domains are tetrahedra in T
and the maps are simplicial maps to “straight” tetrahedra in RP3

Variables
• Up to projective transformation a chart encoded by finitely

many shape parameters
Equations
• Constraints must be imposed on shape parameters to

ensure compatibility of charts
(existence of transition maps)

i. Face equations: Ensure two tetrahedra can be glued
together along a face

ii. Edge equations: Ensure that the tetrahedra abutting an
edge in T close up in RP3
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Thurston’s gluing equations
• Klein model gives H3 Ă RP3 and identifies BH3 with CY8
• Fact: Isom`

pH3q acts simply triply transitively on BH3

• Ideal tetrahedra in H3 (modulo isometry) encoded by z P C,
(Thurston parameters)

• Given two ideal tetrahedra, there is a unique way to glue
them along any face
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In order for the cycle to close up we need to impose an equation
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Thurston’s gluing equations

Given an orientable 3-manifold M with an ideal triangulation T
we get a system of complex equations
(Thurston’s gluing equations)

• Variables:
• 1 variable for each tetrahedron of T

• Equations:
• no face equations
• 1 edge equation for each edge in T .

A solution to these equations is geometric if each component
has positive imaginary part (No inside out tetrahedra)
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Thurston’s gluing equations

Each geometric solution to Thurston’s gluing equations gives
rise to a hyperbolic structure:
• A developing map dev : rM Ñ H3

• A holonomy representation ρ : π1pMq Ñ Isom`
pH3q.

Gluing equations ensure this is well defined and equivariant!
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Naive approach for projective structures

Let’s just try to build tetrahedra in RP3 like we did for H3.

Good news
• All tetrahedra are

projectively equivalent
• Any two tetrahedra can be

glued along a face

Bad news
• Stabilizer of a tetrahedra is

non-trivial (not analytic)
• Tetrahedra in RP3 are not

uniquely determined by
their vertices
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Tetrahedra of flags

A tetrahedron of (incomplete) flags in RP3 consists of
• 4 points in RP3

• A plane through each point
• There is a unique tetrahedron in RP3 whose vertices are

the points and whose interior is disjoint from the planes

Don’t have the previous
problems for tet of flags

• Tetrahedron of flags has
trivial PGL4 stabilizer.

• A tetrahedron of flags
determines a unique
tetrahedron in RP3
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Why tetrahedra of flags?
Tetrahedra in RP3 are not determined by vertices
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Projective gluing equations
Variables

Each tetrahedron of flags comes with coordinates

• 6 Edge coordinates: 1 per edge: Describe the shape of the
tetrahedron of flags (not all independent!)

• 4 Gluing coordinates: 1 per face: Describe how adjacent
tetrahedra of flags will be attached.

All coordinates are positive real
numbers
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• Face equations (2 per face)

• Edge equations (5 per edge)
Only involve variables “near edge”
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Projective gluing equations
The projective structure

Each solution to the projective gluing equations gives rise to a
projective structure:

• A developing map dev : rM Ñ RP3

• A holonomy representation ρ : π1pMq Ñ PGL4.

Gluing equations ensure this is well defined and equivariant!
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Projective gluing equations
Nice properties

• Get lots of interesting projective structures: hyperbolic, anti
de-Sitter, convex projective

• Geometric properties of structures manifest as algebraic
properties of solutions.

• Numerically computing solutions can be automated (a la
SnapPy)



Future directions

• Neumann-Zagier relationships
• Connections to quivers
• Geometric transitions
• Degenerations and tropicalizations



Thank you


