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Outline

1. Cusps in finite volume hyperbolic manifolds
• Geometry of cusps
• Moduli space of cusps (a manifold)

2. Properly convex manifolds

• Generalize hyperbolic manifolds
• Are more flexible
• Occur as deformations of hyperbolic manifolds

3. Generalized cusps

• Occur as ends of properly convex manifolds
• Have similar geometry to hyperbolic cusps
• Have more complicated moduli space (stratified by

orbifolds)
• Exhibit interesting “transitional phenomena”
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Hyperbolic space
Paraboloid model

Let Hn “ tpz, vq P R
loomoon

Vertical

ˆ Rn´1
loomoon

Horizontal

| z ą 1
2 |v |

2
u Ă Rn Ă RPn

• A projective model for hyperbolic space

• Analogous to upper half space model
• Geodesics are (affine) straight lines
• IsompHn

q “ PGLpHn
q :“ tA P PGLn`1pRq | ApHn

q “ Hn
u

• Metric is given by dHn px , yq “ 1
2 logpra : x : y : bsq
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Cusps of hyperbolic manifolds
Paraboloid model

Consider the following subgroups of AffnpRq

T “
"ˆ

1 ut 1
2 |u|

2

0 I u
0 0 1

˙

| u P Rn´1
*

,O “

!´

1 0 0
0 A 0
0 0 1

¯

| A P Opn ´ 1q
)

• T acts simply transitively on each St
(translation on Rn´1 factor)

• O is a point stabilizes a unique point on each horosphere
• G :“ xT ,Oy – T ¸O – IsompRn´1q
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Cusps of hyperbolic orbifolds
Topology of cusps

Let Γ Ă IsompHnq be a lattice and M “ Hn{Γ be a complete
hyperbolic n-orbifold.

Using the “thick-thin” decomposition M can be decomposed into

M “ MK
ğ

i

Ci ,

MK compact and Ci finitely covered by T n´1 ˆ r0,8q.
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Cusps of hyperbolic manifolds
Geometry of cusps

Let
• BT “

Ť

těT St (horoball)
• ∆ a lattice in G0.

The cusp C can be realized as BT {∆

The St{∆ give a foliation of C by Euclidean pn ´ 1q-orbifolds.
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Cusps of hyperbolic manifolds
Moduli space of cusps

• A marked torus cusp is pf ,Cq where C is a cusp and
f : T n´1

ˆ r0,8q Ñ C is a diffeomorphism called a marking.

• pf ,Cq and pf 1,C1q are equivalent if D g P IsompHn
q such that g ˝ f “ f 1

(up to isotopy).

C

g

��

T n´1
ˆ r0,8q

f

99

f 1

%%
C1

• Let T be the space of equivalence classes of marked torus cusps
• Can topologize T using compact C8 topology on markings
• How can we use parameterize T?

• Pick a basis for T – Rn´1

• C – BT {Γ where f˚pZn´1
q “: Γ ď T

• A marked torus cusp gives a basis for Rn´1 (get A P GLn´1pRq)
• Bases from equivalent cusps differ by a Euclidean similarity
• T – Opn ´ 1qzSL˘n´1pRq
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• Let Ω be properly convex and let Γ Ă PGLpΩq be discrete
and torsion free.

• Ω{Γ is a properly convex manifold
• Are there interesting properly convex manifolds?

(Since PGLpΩq is generically trivial)
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Properly convex manifolds

Example 1
A complete hyperbolic manifold Hn{Γ is a properly convex
manifold



Properly convex manifolds

Example 1
A complete hyperbolic manifold Hn{Γ is a properly convex
manifold

Example 2
Deformations of properly hyperbolic manifolds



Properly convex manifolds
Example 1
A complete hyperbolic manifold Hn{Γ is a properly convex
manifold

Example 2
Deformations of properly hyperbolic manifolds

Theorem 1 (Koszul)
If M “ Ω{Γ is a closed properly convex manifold and
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Properly convex manifolds
Example 1
A complete hyperbolic manifold Hn{Γ is a properly convex
manifold

Example 2
Deformations of properly hyperbolic manifolds

Theorem 1 (Koszul)
If M “ Ω{Γ is a closed properly convex manifold and
Γ1 ď PGLn`1pRq is a small deformation of Γ then there is a
properly convex domain Ω1 such that Γ1 ď PGLpΩ1q is discrete
and M – Ω1{Γ1

Remark
Cooper–Long–Tillmann have proven a “relative version” of
Koszul for M non-compact



Properly convex manifolds

Remark
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hypersurfaces we get non-hyperbolic convex projective
manifolds (Benoist, Marquis)
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Generalized cusps
Motivation

• If M “ Hn{Γ is a non-compact finite volume hyperbolic
manifold

• Let M 1 “ Ω{Γ1 be a small properly convex deformation of
M.

• What does the geometry of the ends of M 1 look like?

It’s a generalized cusp

A properly convex manifold C “ Ω1{∆ is a generalized cusp if
• C – Σˆ r0,8q with Σ compact
• Σ is a strictly convex hypersurface

(lifts to Ω1 are locally graphs of convex functions)
• ∆ is vitually nilpotent (or virtually Abelian)
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Geometry of generalized cusps
Overview

Given an n-dimensional generalized cusp C – Ω1{∆ we get

• A properly convex domain Ω Ă Ω1 with smooth boundary
(e.g. BT Ă Hn)

• A foliation of Ω by strictly convex hypersurfaces, St
(horospheres)

• A St -transverse foliation of Ω by concurrent geodesic
• A Euclidean metric on St (Affine 2nd fundamental form)
• Foliation preserving group G Ą ∆

AffnpRq Ą G – T
loomoon

translations

¸ O
loomoon

point stabilizer

• G is a subgroup of the isometry group of IsompStq
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Geometry of generalized cusps
Overview

Given an n-dimensional generalized cusp C – Ω1{∆ we get

• A properly convex domain Ω Ă Ω1 with smooth boundary
(e.g. BT Ă Hn)

• A foliation of Ω by strictly convex hypersurfaces, St
(horospheres)

• A St -transverse foliation of Ω by concurrent geodesic
• A Euclidean metric on St (Affine 2nd fundamental form)
• Foliation preserving group G Ą ∆

AffnpRq Ą G – T
loomoon

translations

¸ O
loomoon

point stabilizer

• G is a subgroup of the isometry group of IsompStq

(may be missing some rotations)



Examples
A quasi-hyperbolic cusp

Let 0 ă λ1 ď . . . ď λn´1

• Let Ω “ tpz, yq P R
loomoon

vertical

ˆpR`qn´1
looomooon

horizontal

| z ą ´
ř

i λ
´1
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• Ω is foliated by St “ tpz, yq P Ω | z “ ´
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´1
i logpyiq ` tu

(horospheres)
• Ω is also foliated by vertical lines
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$

&

%
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´1
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0 Deu 0
0 0 1

˛

‚| u P Rn´1
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-
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Mixed cusps

• Let 0 ď λ1 ď . . . ď λn´1

• Let p “ maxti | λi “ 0u and s “ n ´ p ´ 1

• Let f : Rp
s :“ Rp

ˆ Rs
` Ă Rn´1

Ñ R given by

px1, . . . , xp, y1, . . . ysq ÞÑ
1
2

p
ÿ

i“1

x2
i

looomooon

hyperbolic part

´

s
ÿ

i“1

λ´1
p`i logpyiq

loooooooomoooooooon

quasi-hyperbolic part

• Let Ω “ tpz, px , yqq P R
loomoon

vertical

ˆ Rp
s

loomoon

horizontal

Ă Rn
| z ą f px , yqu

Foliated by St “ tz “ f px , yq ` tu and by vertical lines
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Examples
Diagonalizable cusps

Let 0 ă λ0 ď . . . ď λn´1

• Ω “ tpx1, . . . , xnq P Rn
` |

řn
i“1 λ

´1
i logpxiq ą 0u

• Ω is foliated by St “ tx P Rn
` |

řn
i“1 λ

´1
i logpxiq “ tu

(horospheres)
• Ω is also foliated by lines through the origin
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Let Γ be a lattice in G “ T ¸O then Ω{Γ is a generalized cusp



The big picture

Let Wn “ tλ P Rn | 0 ď λ0 ď . . . ď λn´1u be the
Weyl chamber of Rn

For λ P Wn we get

• A properly convex domain Ωλ

(diagonalizable ðñ λ P intpWnq, otherwise mixed)
• A foliation of Ωλ by strictly convex hypersurfaces St

• A transverse foliation of Ωλ by concurrent geodesics
• Can use foliation to give St a Euclidean metric
• A foliation preserving group Gλ – Tλ ¸Oλ of isometries
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The big picture

Let Wn “ tλ P Rn | 0 ď λ0 ď . . . ď λn´1u be the
Weyl chamber of Rn

For λ P Wn we get
• A properly convex domain Ωλ

(diagonalizable ðñ λ P intpWnq, otherwise mixed)
• A foliation of Ωλ by strictly convex hypersurfaces St

• A transverse foliation of Ωλ by concurrent geodesics
• Can use foliation to give St a Euclidean metric
• A foliation preserving group Gλ – Tλ ¸Oλ of isometries

Remark 1
If Dc ą 0 such that λ “ cλ1 then Ωλ and Ωλ1 are projectively
equivalent and Gλ and Gλ1 are conjugate.



Main Theorem
Theorem 2 (B–Cooper–Leitner)
Let C “ Ω{Γ be an n-dimensional generalized cusp. Then there
is a is a λ P Wn, unique up to scaling, such that
• Γ is conjugate to a lattice Γ1 Ă Gλ

• C deformation retracts (along the geodesic foliation) onto a
submanifold that is projectively equivalent to Ωλ{Γ

1.
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Moduli space of cusps

• A marked generalized torus cusp is pf ,Cq where C is a
generalized cusp and f : T n´1 ˆ r0,8q Ñ C is a
diffeomorphism called a marking.

• pf ,Cq and pf 1,C1q are equivalent if D g P PGLn`1pRq such
that g ˝ f “ f 1 (up to isotopy).

• Let C be the space of equivalence classes of marked torus
cusps.

• Can topologize C using the compact C8 topology on
markings.

• How can we use parameterize C?
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Moduli space of generalized cusps

• Let pf ,Cq be a marked torus cusp

• C – BT {Γ where f˚pZn´1
q “: Γ ď T– Rn´1

• Pick a basis for T– Rn´1

• A marked torus cusp gives a basis for Rn´1 (get A P GLn´1pRq)
• Bases from equivalent cusps differ by a Euclidean similarity

• T – Opn ´ 1qzSL˘n´1pRq
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Transitions
Rough idea

Let rfk ,Ck s “ pλk , rAk sq Ñ rf8,C8s “ pλ8, rA8sq be a
sequence of marked generalized torus cusps such that some
non-zero components of λk tend to zero

In the limit, the geometry of the cusp transitions

Two perspectives
• Geometrically: Since cusp is non-compact, different parts

look very different.
• Algebraically: Non-Hausdorff behavior of the character

variety.
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Transitions
Example

Let Γb ď Gp0,bq be the Lattice generated by
¨

˝

1 0 ´1
0 eb 0
0 0 1

˛

‚

Ωp0,bq{Γb are generalized cusps appear to “degenerate”

Figure: From left to right: b “ 1, b “ .5, b “ .01
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A matter of perspective

We use the compact C8 topology and so what the limit “looks
like” depends on where you “look from”

There are similar transitions anytime a coordinate in Wn goes to
zero.
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Transitions
Representation variety perspective

• Let X “HompZn´1,PGLn`1pRqq{PGLn`1pRq (character variety)

• There is a map Hol : CÑ X

rpf ,Cqs ÞÑ rf˚s : Zn´1 Ñ PGLn`1pRq

• X is non-Hausdorff space (contains lots of reducible reps)
• There are reps ρt and gt P PGLn`1pRq such that

• ρt Ñ ρ as t Ñ 0
• gtρtg´1

t Ñ ρ1 as t Ñ 0
• rρs ‰ rρ1s
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Remaining questions

• Realization Problem: given a generalized cusp C, can you
find an interesting properly convex manifold M with a cusp
projectively equivalent to C?

A few low dimensional
examples, but mostly unknown

• Can we use the geometry of generalized cusps to give
coordinates on the space of convex projective structures
on a fixed manifold? (Fenchel-Nielsen coordinates)

• Better understand the action of the mapping class group
on C and study the quotient (unmarked cusps)
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Thank you


