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1. Cusps in finite volume hyperbolic manifolds

o Geometry of cusps

e Moduli space of cusps (a manifold)
2. Properly convex manifolds

e Generalize hyperbolic manifolds

e Are more flexible

e Occur as deformations of hyperbolic manifolds
3. Generalized cusps

e Occur as ends of properly convex manifolds

e Have similar geometry to hyperbolic cusps

e Have more complicated moduli space (stratified by
orbifolds)

o Exhibit interesting “transitional phenomena”
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Paraboloid model
LetH" = {(z,v)e _R x R |z>1|vf} cR"cRP"

Vertical ~ Horizontal
A projective model for hyperbolic space

Analogous to upper half space model
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Hyperbolic space
Paraboloid model
LetH" = {(z,v)e _R x R"™' |z>1|v[*} cR"c RP"
~—— S~——

Vertical ~ Horizontal
A projective model for hyperbolic space
Analogous to upper half space model
Geodesics are (affine) straight lines
Isom(H") = PGL(H") := {A € PGLy+1(R) | A(H") = H"}
Metric is given by din(x,y) = s log([a: x : y : b])
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Vertical ~ Horizontal

e Foliated by horospheres S; = {(z,v) e H" |z = 1 |V + 1}, t > 0
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Vertical ~ Horizontal

e Foliated by horospheres S; = {(z,v) e H" |z = 1 |V + 1}, t > 0

e Also foliated by lines through oo, that are orthogonal to the S;
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Hyperbolic space

Paraboloid model

LetH" = {(z,v)e _R x R™" |z>1|v[’} cR"c RP"
—— ——
Vertical Horizontal

e Foliated by horospheres Sy = {(z,v) e H" |z =} |[v|* + 1}, t >0
e Also foliated by lines through oo, that are orthogonal to the S;

e The induced metric on S; is flat and given by the Hessian of z = % lv|?

HTL
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Paraboloid model
Consider the following subgroups of Aff,(R)
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Cusps of hyperbolic manifolds

Paraboloid model
Consider the following subgroups of Aff,(R)

T={(s 1 ) ruerr o= {(3 4 §)14com-1}

e T acts simply transitively on each S;
(translation on R~ factor)
e Ois a point stabilizes a unique point on each horosphere
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Cusps of hyperbolic manifolds

Paraboloid model
Consider the following subgroups of Aff,(R)

T={(s 1 ) ruerr o= {(3 4 §)14com-1}

e T acts simply transitively on each S;

(translation on R~ factor)
e Ois a point stabilizes a unique point on each horosphere
e G:=(T,0) =T x O =IlsomR"™1)

H’I’l
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Cusps of hyperbolic orbifolds

Topology of cusps

Let I < Isom(H") be a lattice and M = H"/T be a complete
hyperbolic n-orbifold.

Using the “thick-thin” decomposition M can be decomposed into

M:MK|_|CI7
i

My compact and C; finitely covered by 7"~ x [0, o).

My G

~ ~r ~N
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Cusps of hyperbolic manifolds

Geometry of cusps

Let
e Br = U7 St (horoball)
e A alattice in Gy.

The cusp C can be realized as Br/A

The S;/A give a foliation of C by Euclidean (n — 1)-orbifolds.
H’n

Br

St
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Moduli space of cusps
e A marked torus cusp is (f, C) where C is a cusp and
f: T"' x [0,0) — C is a diffeomorphism called a marking.

e (f,C) and (f', C’) are equivalent if 3 g € Isom(H") such that go f = f’
(up to isotopy).

C/
e et T be the space of equivalence classes of marked torus cusps

e Can topologize T using compact C* topology on markings
e How can we use parameterize T?
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Cusps of hyperbolic manifolds

Moduli space of cusps

Let [(f,C)]e ¥
e Pick a basis for T =~ R""
e C =B/l where f(Z" ") =T<T
e A marked torus cusp gives a basis for R"~' (get A€ GLy_1(R))
e Bases from equivalent cusps differ by a Euclidean similarity
T~ O(n—1)\SLZ ,(R)
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Properly convex geometry

Properly convex domains

Q determines a group PGL(Q) := {A € PGL,.1(R) | A(Q) = Q}

PO(2,1) Diagy ».53 {1}

Generically, PGL(Q) is trivial
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Properly convex geometry

Properly convex manifolds

o Let Q be properly convex and let ' ¢ PGL(Q2) be discrete
and torsion free.

e Q/I is a properly convex manifold

¢ Are there interesting properly convex manifolds?
(Since PGL(Q) is generically trivial)
Yes!
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Properly convex manifolds

Example 1
A complete hyperbolic manifold H" /T is a properly convex
manifold

Example 2
Deformations of properly hyperbolic manifolds

Theorem 1 (Koszul)

If M = Q/T is a closed properly convex manifold and

I" < PGL,,1(R) is a small deformation of I' then there is a
properly convex domain Q' such that T’ < PGL(Y') is discrete
and M =~ Q' /I’

Remark
Cooper—Long-Tillmann have proven a “relative version” of
Koszul for M non-compact
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Generalized cusps

Motivation

e If M =H"/I is a non-compact finite volume hyperbolic
manifold

o Let M' = Q/I" be a small properly convex deformation of
M.

e What does the geometry of the ends of M’ look like?
It's a generalized cusp
A properly convex manifold C = Q'/A is a generalized cusp if
e C =% x[0,00) with X compact
e 3 is a strictly convex hypersurface
(lifts to Q" are locally graphs of convex functions)

e A is vitually nilpotent (or virtually Abelian)



Generalized cusps

Questions

Let C = Q/A is a generalized cusp



Generalized cusps

Questions

Let C = Q/A is a generalized cusp
1. What does 2 look like?



Generalized cusps

Questions

Let C = Q/A is a generalized cusp
1. What does Q look like?
2. What does A look like?



Generalized cusps

Questions

Let C = Q/A is a generalized cusp
1. What does 2 look like?
2. What does A look like?
3. What does the geometry of C look like?



Generalized cusps

Questions

Let C = Q/A is a generalized cusp
1. What does 2 look like?
2. What does A look like?
3. What does the geometry of C look like?
4. What is the moduli space of generalized cusps?
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Geometry of generalized cusps

Overview
Given an n-dimensional generalized cusp C ~ Q'/A we get
o A properly convex domain Q < Q' with smooth boundary
(e.g. Br c H")
¢ A foliation of Q by strictly convex hypersurfaces, S;
(horospheres)
e A S;-transverse foliation of Q2 by concurrent geodesic
e A Euclidean metric on S; (Affine 2nd fundamental form)
e Foliation preserving group G o A
AffR) oG T x O

— ~——
translations  point stabilizer

e Gis a subgroup of the isometry group of Isom(S;)
(may be missing some rotations)
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Examples

A quasi-hyperbolic cusp
LetO < Ay < ... < Ay

e LetQ={(z,y)e _R_x(Ry)"|z> -7 log(y)}
vertical  porizontal
o Qisfoliated by Sy = {(z,y) € Q| z =~ 3, A\ "log(yi) + t}
(horospheres)
e Qis also foliated by vertical lines




Examples
A quasi-hyperbolic cusp

LetO < A\ <...< Apq

10 -3 N'u
T={(0 Du 0 lueR™ },0=¢ n; | A=A
0 0 1 —

Horizontal Coord. Perms.

Let G=T x Oandlet < Gbe alattice.




Examples
A quasi-hyperbolic cusp

LetO < A\ < ... < Ay

10 -3 N'u
T=3(0 De 0 lueR™ Y 0=¢ n; | A=A\
0 0 1 =

Horizontal Coord. Perms.

Let G=T x Oandletl < Gbe a lattice. Q/I is a generalized
cusp
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Examples
A quasi-hyperbolic cusp

LetO < A\ < ... < A\pq

10 -3 N'u
T=<{10 D 0 lueR™ },0=¢ Mnj | A=A
0 0 1 —

Horizontal Coord. Perms.

These cusps are “chiral”
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o let0O< A\ <. < Apt
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Mixed cusps

LetO < A1 < ... < Ay
Letp=max{i|\;=0}ands=n—p—1
Let f: R? := RP x RS < R"™" — R given by

S

12 _
(X1a"'7xpvy17"'y3)H EZXIZ 72)\;7-{1-/'09(}//)
i=1 i=1
hyperbolic part  quasi-hyperbolic part
LetQ={(z,(x,y))e R x RE cR"|z>f(x,y)}

vertical horizontal

Foliated by S; = {z = f(x, y) + t} and by vertical lines

Figure: left: Ay = 0, Ao = 1. right: Ay = Ao =1



Mixed cusps

1 u 0 f(u,v)

O lp O u p
0 0 D, 0 € Affp(R) | (u, v) € R
0 0 O 1

O= O(p) x Psy
~— ~——
Orthogonal  Permutations

Figure: left: Ay =0, 2 = 1. right: \{ = Ao =1



Mixed cusps

1 u 0 f(uv)
_J|0 O u )
T=3Ylo 0 b, o |AM[R)[(uVv)eRs
0 0 O 1
O: O(p) X PS,)\
——

Orthogonal  Permutations

If ' < T x Ois alattice then Q/I is a generalized cusp

Figure: left: Ay = 0, Ao = 1. right: Ay = Ao =1
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Examples

Diagonalizable cusps

LetO < Ao < ... < Apg
o Q={(x1,...,%) e RT | 37, A" log(x;) > 0}
o Qisfoliated by Sy = {x e R7 | 327, A7 log(x) = t}
(horospheres)
e Q is also foliated by lines through the origin



Examples

Diagonalizable cusps

Let0<)\0<...</\n,1

T{(1 )iA,‘Iog(u;)O}
)i

O=( My [x=x)
—

Coord. Perms.



Examples

Diagonalizable cusps

T{( )i)ﬂlog(u;)o}
Ry R

O=( N [Xx=2x)
——
Coord. Perms.

Let I be a lattice in G = T x O then Q/I is a generalized cusp
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The big picture

Weyl chamber of R"
For A\ € W, we get

e A properly convex domain )
(diagonalizable <= X € int(W,), otherwise mixed)

¢ A foliation of Q2 by strictly convex hypersurfaces S;

¢ A transverse foliation of Q by concurrent geodesics

e Can use foliation to give S; a Euclidean metric

A foliation preserving group G, =~ T, x O, of isometries
Remark 1

If 3¢ > 0 such that A = ¢\’ then Q) and Q). are projectively
equivalent and Gy and G, are conjugate.



Main Theorem

Theorem 2 (B—Cooper—Leitner)

Let C = Q/T be an n-dimensional generalized cusp. Then there
is ais a X € Wy, unique up to scaling, such that

e [ is conjugate to a lattice T’ — G,

e C deformation retracts (along the geodesic foliation) onto a
submanifold that is projectively equivalent to Q0 /T".
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Let C = Q/T be an n-dimensional generalized cusp. Then there
is ais a X € Wy, unique up to scaling, such that

e [ is conjugate to a lattice ' = G,

e C deformation retracts (along the geodesic foliation) onto a
submanifold that is projectively equivalent to Q0 /T".
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A marked generalized torus cusp is (f, C) where C is a
generalized cuspand f: T"~' x [0,0) — Cis a
diffeomorphism called a marking.

(f,C) and (f’, C’) are equivalent if 3 g € PGL,1(R) such
that g o f = f’ (up to isotopy).

Let € be the space of equivalence classes of marked torus
cusps.

Can topologize € using the compact C* topology on
markings.

How can we use parameterize ¢?
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Moduli space of generalized cusps
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A gives a for R™
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Transitions
Rough idea

Let [fk, Ck] = ()\ln [AkD - [fom COO] = ()\007 [AOOD be a
sequence of marked generalized torus cusps such that some
non-zero components of A tend to zero

In the limit, the geometry of the cusp transitions

Two perspectives
e Geometrically: Since cusp is non-compact, different parts
look very different.
¢ Algebraically: Non-Hausdorff behavior of the character
variety.
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Transitions

Example
Let ', < Go,p) be the Lattice generated by

1 0 -1
0 e 0
0 0 1

Q0,6)/Tb are generalized cusps appear to “degenerate”

Figure: From left to right: b=1, b= .5, b = .01
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Transitions

Example
1/b 1/b 0
Letgpb=1| O 1 —1/b|. We can conjugate
0 0 1

1 0 —1 1 1+0(b) I+ 0W) 11
g |0 € 0 |g'=10 e 1+00b) | - (0 1
0 0 1 0 0 1 00

[ E

Figure: From left to right: b=1, b= .5, b = .01
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Transitions
Example

1/b 1/b 0
Letgpb=1| O 1 —1/b|. We can conjugate
0

0 1
1 0 —1 1 1+0(b) I+ 0W) 11 3
g |0 € 0 |g'=10 e 1+00b) | -0 1 1
0 0 1 0 0 1 0 0 1

After applying a projective transform, Qq 4)/Tp — Q(0,0)/To

Figure: From left to right: b=1, b= .5, b = .01
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Transition
A matter of perspective

We use the compact C* topology and so what the limit “looks
like” depends on where you “look from”

Q(o b)/rb From deep in
S cusp manifold
 starts to look like
hyperbolic cusp

There are similar transitions anytime a coordinate in W, goes to
zero.
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Transitions

Representation variety perspective

Let X =Hom(z"~',PGL,11(R))/PGL,:1(R) (Character variety)
ThereisamapHol: ¢ - X

[(f,C)] — [f] : Z"" — PGLp,1(R)
X is non-Hausdorff space (contains lots of reducible reps)

There are reps p; and g; € PGL,, 1(R) such that

e pf—past—0
e gipig; ' —past—0
o [p] # [F]
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Remaining questions

e Realization Problem: given a generalized cusp C, can you
find an interesting properly convex manifold M with a cusp
projectively equivalent to C? A few low dimensional
examples, but mostly unknown

e Can we use the geometry of generalized cusps to give
coordinates on the space of convex projective structures
on a fixed manifold? (Fenchel-Nielsen coordinates)

e Better understand the action of the mapping class group
on ¢ and study the quotient (unmarked cusps)



Thank you
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