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Hyperbolic manifolds
Definitions

• A (complete) hyperbolic manifold is M “ Hn{Γ, where
Γ Ă Isom`

pHnq is a discrete torsion free subgroup.

• M is closed if M is compact.
• “Most” closed 3-manifolds admit complete hyperbolic

structures.



Hyperbolic manifolds
Definitions

• A (complete) hyperbolic manifold is M “ Hn{Γ, where
Γ Ă Isom`

pHnq is a discrete torsion free subgroup.
• M is closed if M is compact.

• “Most” closed 3-manifolds admit complete hyperbolic
structures.



Hyperbolic manifolds
Definitions

• A (complete) hyperbolic manifold is M “ Hn{Γ, where
Γ Ă Isom`

pHnq is a discrete torsion free subgroup.
• M is closed if M is compact.
• “Most” closed 3-manifolds admit complete hyperbolic

structures.



Thurston’s hyperbolic Dehn filling theorem
Dehn filling

Let M be 3 manifold with BN “ T 2. A Dehn filling of M is a
closed manifold obtained by gluing D2 ˆ S1 to M along their
boundaries.

Dehn fillings are parameterized by their filling slope
p{q P QY t8u and are denoted by Mp{q



Thurston’s theorem

Theorem 1
Let M be a 1-cusped, finite volume hyperbolic manifold. Then
for all but finitely many slopes p{q, Mp{q admits a hyperbolic
structure.
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Convex projective manifolds

• A properly convex projective manifold is M “ Ω{Γ where
Ω Ă RPn is a properly convex domain in RPn and
Γ Ă PGLn`1pRq is a discrete torsion free subgroup that
preserves Ω.

• Ω Ă RPn is properly convex if it is a convex, compact
subset of some affine patch.

• M is closed if Ω{Γ is compact.
• Retain many “rank 1” features despite living in ”high rank”

Lie groups. (SOpn,1q vs. SLnpRq, n ě 3)
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Convex projective manifolds
Examples

• Hn Ă RPn is properly convex, so complete hyperbolic
manifolds are properly convex



Convex projective manifolds
Examples

• There are large deformation spaces of properly convex
manifolds diffeomorphic to Σg , g ě 2 (Goldman 1990)
(à la Teichmuller space).
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• „ 2000 Benoist constructed convex projective manifolds
diffeomorphic to non-hyperbolic manifolds using Coxeter
groups.

• (B-Danciger-Lee ’18) Showed there are infinitely many
examples like these in dimension 3

• Plus many, many others...
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Convex projective manifolds
rigidity

Heuristic: Non-compact convex projective 3-manifolds tend to
deform; closed ones tend to be quite rigid

• (Cooper–Long–Thistlethwaite) Most “small” closed
hyperbolic 3-manifolds are locally rigid,

but a few can be deformed!

• (Huesener–Porti) Most Dehn fillings on figure-eight knot
are locally rigid (Also other manifolds)

Moral: It’s hard to construct non-hyperbolic properly convex
manifolds diffeomorphic to close hyperbolic manifolds by
deforming
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Main theorem

Theorem 2 (B-Danciger-Lee-Marquis)
If M P tm004 (Figure-8), m003 (Figure-8 sister), m007, m019u then
there is an interval, then there is I Ă RP1 “ RY t8u so that

• for all but finitely many filling slopes with p{q P I so that
Mp{q admits a non-hyperbolic properly convex projective
structure.

• the structures above are not obtained by deforming the
hyperbolic structure on Mp{q

• Theorem actually provides verifiable hypotheses which
above examples satisfy.

• Answer (negatively) a question asked by Benoist about
connectedness of deformation spaces
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Picture of main theorem

A “positive proportion” of all filling slopes have convex
projective structures
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Sketch of proof
Thurston’s theorem

Let M “ H3{Γ

• ρ : π1M Ñ Γ Ă IsompH3q (holonomy).

• xα, βy “ ∆ “ π1BM (peripheral subgroup).
• ρpαq, ρpβq are parabolics.
• deform ρ to ρ1 where ρ1pαq, ρ1pβq loxodromic

(i.e. rotation/translation about same axis).
• Deformation is characterized by pa,bq P R2 so that
ρ1pαqaρ1pβqb “ rotation by 2π
(Dehn filling coordinates)

• If pa,bq P Z2 relatively prime then ρ1 is holonomy of Ma{b

• Thurston showed all but finitely many a{b are realized
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Sketch of proof
Thurston’s theorem

• ρ has Dehn filling coordinates 8
• Complement of blue is neighborhood of 8 in R2 Y t8u



Sketch of proof
First deformation

Let M “ H3{Γ as in theorem, ∆ “ xα, βy “ π1BM

• ρ : π1M Ñ Γ Ă Isom`
pH3q – PSOp3,1q Ă PGL4pRq

• Deform ρ0 :“ ρ to ρt : π1M Ñ PGL4pRq so that for t ‰ 0, ρt
is a holonomy of properly convex manifold with
“generalized cusp”

• There is put , vtq so that ρtpαq
utρtpβq

vt “ unipotent translation
• put , vtq is well definied up to scaling and

ut{vt is the unipotent slope
• The unipotent slopes sweep out I Ă RP1 “ RY t8u

(I from the theorem).
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Sketch of proof
Second deformation

• Deform ρt to ρt ,s so that ρt ,spαq, ρt ,spβq are
rotation/translation about a projective line.

• Define Dehn filling coordinates pat ,s,bt ,sq so that
ρt ,spαq

at,sρt ,spβq
bt,s “ rotation by 2π

• As s Ñ 0, pat ,s,bt ,sq converges in RP2 to unipotent slope of
ρt

• When s is close to zero and pat ,s,bt ,sq are relatively prime
then ρt ,s is the holonomy of a properly convex projective
structure on Mat,s{bt,s (Cooper–Long–Tillmann gluing
construction)

• We show that all but finitely many relatively prime
pat ,s,bt ,sq in the “cone of I” can be realized
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Remaining questions

• What other manifolds does the theorem apply to?

• How big is I? Is it all of RP1?

If yes we get a full analogue of Thurston’s theorem
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Thank you!


