A convex projective Dehn filling theorem

Sam Ballas

(joint with J. Danciger, G.S. Lee, & L. Marquis)

Florida State University

AMS Sectional Meeting Mar 18, 2023

ション ふゆ アメリア メリア しょうめん

Hyperbolic manifolds Definitions

A (complete) hyperbolic manifold is M = ℍⁿ/Γ, where Γ ⊂ lsom⁺(ℍⁿ) is a discrete torsion free subgroup.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

Hyperbolic manifolds Definitions

A (complete) hyperbolic manifold is M = ℍⁿ/Γ, where Γ ⊂ lsom⁺(ℍⁿ) is a discrete torsion free subgroup.

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• *M* is *closed* if *M* is compact.

Hyperbolic manifolds Definitions

- A *(complete) hyperbolic manifold* is $M = \mathbb{H}^n / \Gamma$, where $\Gamma \subset \text{Isom}^+(\mathbb{H}^n)$ is a discrete torsion free subgroup.
- *M* is *closed* if *M* is compact.
- "Most" closed 3-manifolds admit complete hyperbolic structures.

Thurston's hyperbolic Dehn filling theorem

Let *M* be 3 manifold with $\partial N = T^2$. A *Dehn filling* of *M* is a *closed* manifold obtained by gluing $D^2 \times S^1$ to *M* along their boundaries.

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Dehn fillings are parameterized by their *filling slope* $p/q \in \mathbb{Q} \cup \{\infty\}$ and are denoted by $M_{p/q}$

Thurston's theorem

Theorem 1

Let M be a 1-cusped, finite volume hyperbolic manifold. Then for all but finitely many slopes p/q, $M_{p/q}$ admits a hyperbolic structure.

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ● ● の Q @

Thurston's theorem

Theorem 1

Let M be a 1-cusped, finite volume hyperbolic manifold. Then for all but finitely many slopes p/q, $M_{p/q}$ admits a hyperbolic structure.

・ ロ ト ス 厚 ト ス 目 ト ス 目 ト

 A properly convex projective manifold is M = Ω/Γ where Ω ⊂ ℝPⁿ is a properly convex domain in ℝPⁿ and Γ ⊂ PGL_{n+1}(ℝ) is a discrete torsion free subgroup that preserves Ω.

- A properly convex projective manifold is M = Ω/Γ where Ω ⊂ ℝPⁿ is a properly convex domain in ℝPⁿ and Γ ⊂ PGL_{n+1}(ℝ) is a discrete torsion free subgroup that preserves Ω.
- Ω ⊂ ℝℙⁿ is *properly convex* if it is a convex, compact subset of some affine patch.

- A properly convex projective manifold is M = Ω/Γ where Ω ⊂ ℝPⁿ is a properly convex domain in ℝPⁿ and Γ ⊂ PGL_{n+1}(ℝ) is a discrete torsion free subgroup that preserves Ω.
- Ω ⊂ ℝℙⁿ is *properly convex* if it is a convex, compact subset of some affine patch.

うつん 川 エー・エー・ エー・ ひゃう

• *M* is *closed* if Ω/Γ is compact.

- A properly convex projective manifold is M = Ω/Γ where Ω ⊂ ℝPⁿ is a properly convex domain in ℝPⁿ and Γ ⊂ PGL_{n+1}(ℝ) is a discrete torsion free subgroup that preserves Ω.
- Ω ⊂ ℝℙⁿ is *properly convex* if it is a convex, compact subset of some affine patch.
- *M* is *closed* if Ω/Γ is compact.
- Retain many "rank 1" features despite living in "high rank" Lie groups. (SO(n, 1) vs. SL_n(ℝ), n ≥ 3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 There are large deformation spaces of properly convex manifolds diffeomorphic to Σ_g, g ≥ 2 (Goldman 1990) (à la Teichmuller space).

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

- ~ 2000 Benoist constructed convex projective manifolds diffeomorphic to non-hyperbolic manifolds using Coxeter groups.
- (B-Danciger-Lee '18) Showed there are infinitely many examples like these in dimension 3

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- ~ 2000 Benoist constructed convex projective manifolds diffeomorphic to non-hyperbolic manifolds using Coxeter groups.
- (B-Danciger-Lee '18) Showed there are infinitely many examples like these in dimension 3

- ~ 2000 Benoist constructed convex projective manifolds diffeomorphic to non-hyperbolic manifolds using Coxeter groups.
- (B-Danciger-Lee '18) Showed there are infinitely many examples like these in dimension 3
- Plus many, many others...

Heuristic: Non-compact convex projective 3-manifolds tend to deform; closed ones tend to be quite rigid

Heuristic: Non-compact convex projective 3-manifolds tend to deform; closed ones tend to be quite rigid

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• (Cooper–Long–Thistlethwaite) Most "small" closed hyperbolic 3-manifolds are locally rigid,

Heuristic: Non-compact convex projective 3-manifolds tend to deform; closed ones tend to be quite rigid

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

• (Cooper–Long–Thistlethwaite) Most "small" closed hyperbolic 3-manifolds are locally rigid, but a few can be deformed!

Heuristic: Non-compact convex projective 3-manifolds tend to deform; closed ones tend to be quite rigid

- (Cooper–Long–Thistlethwaite) Most "small" closed hyperbolic 3-manifolds are locally rigid, but a few can be deformed!
- (Huesener–Porti) Most Dehn fillings on figure-eight knot are locally rigid (Also other manifolds)

Heuristic: Non-compact convex projective 3-manifolds tend to deform; closed ones tend to be quite rigid

- (Cooper–Long–Thistlethwaite) Most "small" closed hyperbolic 3-manifolds are locally rigid, but a few can be deformed!
- (Huesener–Porti) Most Dehn fillings on figure-eight knot are locally rigid (Also other manifolds)

Moral: It's hard to construct non-hyperbolic properly convex manifolds diffeomorphic to close hyperbolic manifolds by deforming

Theorem 2 (B-Danciger-Lee-Marquis)

If $M \in \{m004 \ (Figure-8), m003 \ (Figure-8 \ sister), m007, m019\}$ then there is an interval, then there is $I \subset \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ so that

 for all but finitely many filling slopes with p/q ∈ I so that M_{p/q} admits a non-hyperbolic properly convex projective structure.

Theorem 2 (B-Danciger-Lee-Marquis)

If $M \in \{m004 \ (Figure-8), m003 \ (Figure-8 \ sister), m007, m019\}$ then there is an interval, then there is $I \subset \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ so that

- for all but finitely many filling slopes with p/q ∈ I so that M_{p/q} admits a non-hyperbolic properly convex projective structure.
- the structures above are not obtained by deforming the hyperbolic structure on $M_{p/q}$

Theorem 2 (B-Danciger-Lee-Marquis)

If $M \in \{m004 \ (Figure-8), m003 \ (Figure-8 \ sister), m007, m019\}$ then there is an interval, then there is $I \subset \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ so that

- for all but finitely many filling slopes with p/q ∈ I so that M_{p/q} admits a non-hyperbolic properly convex projective structure.
- the structures above are not obtained by deforming the hyperbolic structure on M_{p/q}
- Theorem actually provides verifiable hypotheses which above examples satisfy.

Theorem 2 (B-Danciger-Lee-Marquis)

If $M \in \{m004 \ (Figure-8), m003 \ (Figure-8 \ sister), m007, m019\}$ then there is an interval, then there is $I \subset \mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$ so that

- for all but finitely many filling slopes with p/q ∈ I so that M_{p/q} admits a non-hyperbolic properly convex projective structure.
- the structures above are not obtained by deforming the hyperbolic structure on $M_{p/q}$
- Theorem actually provides verifiable hypotheses which above examples satisfy.
- Answer (negatively) a question asked by Benoist about connectedness of deformation spaces

Picture of main theorem

・ロト・(部・・ヨト・ヨー・)へで

Picture of main theorem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A "positive proportion" of all filling slopes have convex projective structures

Thurston's theorem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let $M = \mathbb{H}^3 / \Gamma$ • $\rho : \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (*holonomy*).

Thurston's theorem

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (*holonomy*).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).

Thurston's theorem

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (*holonomy*).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).
- $\rho(\alpha), \rho(\beta)$ are parabolics.

Thurston's theorem

うつん 川 エー・エー・ エー・ ひゃう

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (holonomy).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).
- $\rho(\alpha), \rho(\beta)$ are parabolics.
- deform ρ to ρ' where ρ'(α), ρ'(β) loxodromic (i.e. rotation/translation about same axis).

Thurston's theorem

Let $M = \mathbb{H}^3/\Gamma$

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (holonomy).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).
- $\rho(\alpha), \rho(\beta)$ are parabolics.
- deform ρ to ρ' where $\rho'(\alpha)$, $\rho'(\beta)$ loxodromic (i.e. rotation/translation about same axis).
- Deformation is characterized by (a, b) ∈ ℝ² so that ρ'(α)^aρ'(β)^b = rotation by 2π
 (Dehn filling coordinates)

Thurston's theorem

Let $M = \mathbb{H}^3/\Gamma$

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (holonomy).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).
- $\rho(\alpha), \rho(\beta)$ are parabolics.
- deform ρ to ρ' where ρ'(α), ρ'(β) loxodromic (i.e. rotation/translation about same axis).
- Deformation is characterized by (a, b) ∈ ℝ² so that ρ'(α)^aρ'(β)^b = rotation by 2π (Dehn filling coordinates)
- If (a, b) ∈ Z² relatively prime then ρ' is holonomy of M_{a/b}

Thurston's theorem

- $\rho: \pi_1 M \to \Gamma \subset \text{Isom}(\mathbb{H}^3)$ (holonomy).
- $\langle \alpha, \beta \rangle = \Delta = \pi_1 \partial M$ (peripheral subgroup).
- $\rho(\alpha), \rho(\beta)$ are parabolics.
- deform ρ to ρ' where ρ'(α), ρ'(β) loxodromic (i.e. rotation/translation about same axis).
- Deformation is characterized by (a, b) ∈ ℝ² so that ρ'(α)^aρ'(β)^b = rotation by 2π (Dehn filling coordinates)
- If (a, b) ∈ Z² relatively prime then ρ' is holonomy of M_{a/b}
- Thurston showed all but finitely many *a/b* are realized

Thurston's theorem

- ρ has Dehn filling coordinates ∞
- Complement of blue is neighborhood of ∞ in $\mathbb{R}^2 \cup \{\infty\}$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

- Let $M = \mathbb{H}^3/\Gamma$ as in theorem, $\Delta = \langle \alpha, \beta \rangle = \pi_1 \partial M$
 - $\rho: \pi_1 M \to \Gamma \subset \mathsf{Isom}^+(\mathbb{H}^3) \cong PSO(3,1) \subset \mathsf{PGL}_4(\mathbb{R})$

Let $M = \mathbb{H}^3/\Gamma$ as in theorem, $\Delta = \langle \alpha, \beta \rangle = \pi_1 \partial M$

• $\rho: \pi_1 M \to \Gamma \subset \mathsf{Isom}^+(\mathbb{H}^3) \cong \mathit{PSO}(3,1) \subset \mathsf{PGL}_4(\mathbb{R})$

• Deform $\rho_0 := \rho$ to $\rho_t : \pi_1 M \to \mathsf{PGL}_4(\mathbb{R})$ so that for $t \neq 0$, ρ_t is a holonomy of properly convex manifold with "generalized cusp"

Let $M = \mathbb{H}^3/\Gamma$ as in theorem, $\Delta = \langle \alpha, \beta \rangle = \pi_1 \partial M$

• $\rho: \pi_1 M \to \Gamma \subset \mathsf{Isom}^+(\mathbb{H}^3) \cong PSO(3,1) \subset \mathsf{PGL}_4(\mathbb{R})$

- Deform $\rho_0 := \rho$ to $\rho_t : \pi_1 M \to \mathsf{PGL}_4(\mathbb{R})$ so that for $t \neq 0$, ρ_t is a holonomy of properly convex manifold with "generalized cusp"
- There is (u_t, v_t) so that $\rho_t(\alpha)^{u_t} \rho_t(\beta)^{v_t}$ = unipotent translation

Let $M = \mathbb{H}^3/\Gamma$ as in theorem, $\Delta = \langle \alpha, \beta \rangle = \pi_1 \partial M$

• $\rho: \pi_1 M \to \Gamma \subset \mathsf{Isom}^+(\mathbb{H}^3) \cong \mathit{PSO}(3,1) \subset \mathsf{PGL}_4(\mathbb{R})$

- Deform $\rho_0 := \rho$ to $\rho_t : \pi_1 M \to \mathsf{PGL}_4(\mathbb{R})$ so that for $t \neq 0$, ρ_t is a holonomy of properly convex manifold with "generalized cusp"
- There is (u_t, v_t) so that $\rho_t(\alpha)^{u_t} \rho_t(\beta)^{v_t}$ = unipotent translation

うつん 川 エー・エー・ エー・ ひゃう

 (*u*_t, *v*_t) is well definied up to scaling and *u*_t/*v*_t is the *unipotent slope*

Let $M = \mathbb{H}^3/\Gamma$ as in theorem, $\Delta = \langle \alpha, \beta \rangle = \pi_1 \partial M$

• $\rho: \pi_1 M \to \Gamma \subset \mathsf{Isom}^+(\mathbb{H}^3) \cong \mathit{PSO}(3,1) \subset \mathsf{PGL}_4(\mathbb{R})$

- Deform $\rho_0 := \rho$ to $\rho_t : \pi_1 M \to \mathsf{PGL}_4(\mathbb{R})$ so that for $t \neq 0$, ρ_t is a holonomy of properly convex manifold with "generalized cusp"
- There is (u_t, v_t) so that $\rho_t(\alpha)^{u_t} \rho_t(\beta)^{v_t}$ = unipotent translation

- (*u*_t, *v*_t) is well definied up to scaling and *u*_t/*v*_t is the *unipotent slope*
- The unipotent slopes sweep out *I* ⊂ ℝP¹ = ℝ ∪ {∞}
 (*I* from the theorem).

First deformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

• Deform ρ_t to $\rho_{t,s}$ so that $\rho_{t,s}(\alpha)$, $\rho_{t,s}(\beta)$ are rotation/translation about a projective line.

- Deform ρ_t to $\rho_{t,s}$ so that $\rho_{t,s}(\alpha)$, $\rho_{t,s}(\beta)$ are rotation/translation about a projective line.
- Define *Dehn filling coordinates* $(a_{t,s}, b_{t,s})$ so that $\rho_{t,s}(\alpha)^{a_{t,s}}\rho_{t,s}(\beta)^{b_{t,s}} =$ rotation by 2π

- Deform ρ_t to $\rho_{t,s}$ so that $\rho_{t,s}(\alpha)$, $\rho_{t,s}(\beta)$ are rotation/translation about a projective line.
- Define *Dehn filling coordinates* $(a_{t,s}, b_{t,s})$ so that $\rho_{t,s}(\alpha)^{a_{t,s}}\rho_{t,s}(\beta)^{b_{t,s}} =$ rotation by 2π
- As $s \to 0$, $(a_{t,s}, b_{t,s})$ converges in \mathbb{RP}^2 to unipotent slope of ρ_t

- Deform ρ_t to $\rho_{t,s}$ so that $\rho_{t,s}(\alpha)$, $\rho_{t,s}(\beta)$ are rotation/translation about a projective line.
- Define *Dehn filling coordinates* $(a_{t,s}, b_{t,s})$ so that $\rho_{t,s}(\alpha)^{a_{t,s}}\rho_{t,s}(\beta)^{b_{t,s}} =$ rotation by 2π
- As $s \to 0$, $(a_{t,s}, b_{t,s})$ converges in \mathbb{RP}^2 to unipotent slope of ρ_t
- When s is close to zero and (a_{t,s}, b_{t,s}) are relatively prime then ρ_{t,s} is the holonomy of a properly convex projective structure on M_{a_{t,s}/b_{t,s}} (Cooper–Long–Tillmann gluing construction)

(日本本語を本語を本語を本目を)

- Deform ρ_t to $\rho_{t,s}$ so that $\rho_{t,s}(\alpha)$, $\rho_{t,s}(\beta)$ are rotation/translation about a projective line.
- Define *Dehn filling coordinates* $(a_{t,s}, b_{t,s})$ so that $\rho_{t,s}(\alpha)^{a_{t,s}}\rho_{t,s}(\beta)^{b_{t,s}} =$ rotation by 2π
- As $s \to 0$, $(a_{t,s}, b_{t,s})$ converges in \mathbb{RP}^2 to unipotent slope of ρ_t
- When s is close to zero and (a_{t,s}, b_{t,s}) are relatively prime then ρ_{t,s} is the holonomy of a properly convex projective structure on M_{a_{t,s}/b_{t,s}} (Cooper–Long–Tillmann gluing construction)
- We show that all but finitely many relatively prime $(a_{t,s}, b_{t,s})$ in the "cone of *I*" can be realized

Second deformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Second deformation

< ロ > < 回 > < 三 > < 三 > < 三 < つ < で</p>

・ロト・西ト・ヨト・ヨー りゃぐ

• What other manifolds does the theorem apply to?

 What other manifolds does the theorem apply to? (Numerical computations suggest the hypotheses are often satisfied)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 □ のへで

 What other manifolds does the theorem apply to? (Numerical computations suggest the hypotheses are often satisfied)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

How big is *I*? Is it all of ℝP¹?

 What other manifolds does the theorem apply to? (Numerical computations suggest the hypotheses are often satisfied)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

How big is /? Is it all of RP¹?
 If yes we get a full analogue of Thurston's theorem

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●