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Definitions

e A (complete) hyperbolic manifoldis M = H"/I', where
I < Isom™ (H") is a discrete torsion free subgroup.

e Mis closedif M is compact.

¢ “Most” closed 3-manifolds admit complete hyperbolic
structures.



Thurston’s hyperbolic Dehn filling theorem
Dehn filling

Let M be 3 manifold with dN = T2. A Dehn filling of M is a
closed manifold obtained by gluing D? x S' to M along their

boundaries.
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Dehn fillings are parameterized by their filling slope
p/q € Q u {0} and are denoted by M, ,
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Convex projective manifolds

A properly convex projective manifoldis M = Q/T where
Q < RP" is a properly convex domain in RP" and

I < PGL,.1(R) is a discrete torsion free subgroup that
preserves (2.

Q < RP" is properly convex if it is a convex, compact
subset of some affine patch.

M is closed if Q/T is compact.

Retain many “rank 1” features despite living in "high rank”
Lie groups. (SO(n, 1) vs. SLy(R), n = 3)



Convex projective manifolds

Examples

o H" = RP" is properly convex, so complete hyperbolic
manifolds are properly convex
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Convex projective manifolds
Examples

e There are large deformation spaces of properly convex
manifolds diffeomorphic to X4, g > 2 (Goldman 1990)
(a la Teichmuller space).
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groups.
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Convex projective manifolds
Examples

e ~ 2000 Benoist constructed convex projective manifolds
diffeomorphic to non-hyperbolic manifolds using Coxeter
groups.

e (B-Danciger-Lee '18) Showed there are infinitely many
examples like these in dimension 3

¢ Plus many, many others...
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Convex projective manifolds
rigidity

Heuristic: Non-compact convex projective 3-manifolds tend to
deform; closed ones tend to be quite rigid

e (Cooper—Long—Thistlethwaite) Most “small” closed
hyperbolic 3-manifolds are locally rigid,
but a few can be deformed!
e (Huesener—Porti) Most Dehn fillings on figure-eight knot
are locally rigid (Also other manifolds)
Moral: It's hard to construct non-hyperbolic properly convex
manifolds diffeomorphic to close hyperbolic manifolds by
deforming
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Main theorem

Theorem 2 (B-Danciger-Lee-Marquis)
If M € {m004 (Figure-8), m003 (Figure-8 sister), m007, m019} then
there is an interval, then there is | « RP' = R U {o0} so that
e for all but finitely many filling slopes with p/q € | so that
M,,q admits a non-hyperbolic properly convex projective
structure.
e the structures above are not obtained by deforming the
hyperbolic structure on My,

e Theorem actually provides verifiable hypotheses which
above examples satisfy.

e Answer (negatively) a question asked by Benoist about
connectedness of deformation spaces
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Picture of main theorem
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A “positive proportion” of all filling slopes have convex
projective structures
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Thurston’s theorem

Let M = H3/T
o p:mM — T c Isom(H3) (holonomy).
e {a, 3) = A = 710M (peripheral subgroup).
e p(a), p(B) are parabolics.

 deform p to p’ where p/(«), p'(5) loxodromic
(i.e. rotation/translation about same axis).

« Deformation is characterized by (a, b) € R? so that

o' (a)3p'(B)P = rotation by 27

(Dehn filling coordinates)
o If (a, b) € Z? relatively prime then p’ is holonomy of Ma)p
e Thurston showed all but finitely many a/b are realized



Sketch of proof

Thurston’s theorem
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¢ p has Dehn filling coordinates oo

« Complement of blue is neighborhood of co in R? U {o0}
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Sketch of proof

First deformation

Let M = H3/I as in theorem, A = {a, ) = m10M

e p:mM—T clsom®(H?) = PSO(3,1) = PGL4(R)

e Deform pg := pto p; : 1M — PGL4(R) so that for t # 0, p;
is a holonomy of properly convex manifold with
“generalized cusp”

e Thereis (ut, v¢) so that pt(a) pt(3)" = unipotent translation

e (ut, vt) is well definied up to scaling and
ut/v¢ is the unipotent slope

o The unipotent slopes sweep out / c RP' = R U {0}
(/ from the theorem).



Sketch of proof

First deformation

Q>



Sketch of proof

Second deformation

e Deform p; to pt s so that pt s(a), prs(B) are
rotation/translation about a projective line.



Sketch of proof

Second deformation

e Deform p; to pt s so that pt s(a), prs(B) are
rotation/translation about a projective line.

 Define Dehn filling coordinates (a s, bt s) so that
pt.s(@)sps s(B)Pts = rotation by 2r



Sketch of proof

Second deformation

e Deform p; to pt s so that pt s(a), prs(B) are
rotation/translation about a projective line.

 Define Dehn filling coordinates (a s, bt s) so that
pt.s(@)sps s(B)Pts = rotation by 2r

e As s — 0, (a1, bts) converges in RP? to unipotent slope of
pt



Sketch of proof

Second deformation

Deform pt to pt s so that pt s(a), pr.s(B) are
rotation/translation about a projective line.

Define Dehn filling coordinates (a; s, bt s) so that
pt.s(@)sps s(B)Pts = rotation by 2r

As s — 0, (ats, brs) converges in RPP? to unipotent slope of
pt

When s is close to zero and (a; s, bt s) are relatively prime
then p; s is the holonomy of a properly convex projective
structure on My, /5, , (Cooper—Long-Tillmann gluing
construction)
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Second deformation

Deform pt to pt s so that pt s(a), pr.s(B) are
rotation/translation about a projective line.

Define Dehn filling coordinates (a; s, bt s) so that
pt.s(@)sps s(B)Pts = rotation by 2r

As s — 0, (ats, brs) converges in RPP? to unipotent slope of
pt

When s is close to zero and (a; s, bt s) are relatively prime
then p; s is the holonomy of a properly convex projective
structure on My, /5, , (Cooper—Long-Tillmann gluing
construction)

We show that all but finitely many relatively prime

(at,s, bt s) in the “cone of /” can be realized
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Sketch of proof

Second deformation
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Remaining questions

e What other manifolds does the theorem apply to?

(Numerical computations suggest the hypotheses are often
satisfied)

 How big is /? Is it all of RP'?
If yes we get a full analogue of Thurston’s theorem



Thank you!
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